Liquidity considerations in estimating implied volatility

Rohini Grover Susan Thomas

Presentation at the 7th conference of Asia-Pacific Association of Derivatives

26 August, 2011
Do we need a new implied volatility estimation methodology?

- The first method: ATM options, equally weighted. (CBOE VXO)
- New method: ATM+OTM options, weights are free of a specific option pricing model. (CBOE VIX)
- Why search for a new method?
Liquidity matters

- Financial markets deliver good prices when liquidity is robust.
- Recently, there have been instances of market liquidity freezing up (e.g., 6th May Flash Crash; Sep 2008, Global Financial crisis).
- Market prices are particularly crucial then; but they have to be adjusted for vanishing liquidity.
- Even more constant, cross-sectional variation in liquid for futures and options is high.
- This is a global phenomenon, not one restricted to emerging economies.
Rohini Grover, Susan Thomas
Liquidity considerations in estimating implied volatility
Liquidity considerations in estimating implied volatility

NIFTY Call options for September 2007

NIFTY Call options for September 2008
An approach adjusting for cross-sectional liquidity

- Use all options that gives a current market price.
- Near-month and next-month maturities.
- Weight is a simple inverse of percentage spread.
- The liquidity adjusted VIX, \(SVIX \) is estimated as:

\[
\sigma_{tj} = \frac{\sum_i w_{it,j} \sigma_{it}}{\sum_i w_{it,j}}
\]

\[
w_{it,j} = \frac{1}{s_{it,j}}
\]

Where, \(s_{it,j} \) is the spread of the \(j^{th} \) option at time \(t \), and \(i \) is the maturity of the option, varying between near and next-month.

This weight incorporates cross-sectional variation in liquidity, automatically adjusts the lower weights for illiquid options.
Performance evaluation

Candidates competing with $SVIX$:

1. VXO,
2. Vega-weighted VIX ($VVIX$),
3. Elasticity-of-volatility-weighted VIX ($EVIX$)

Benchmark: Realised volatility (RV) using intra-day returns at one-minute intervals, scaled up to a daily volatility measure.
Rohini Grover, Susan Thomas

Liquidity considerations in estimating implied volatility
Performance evaluations

Evaluations based on:
1. Forecasting regressions (Christensen and Prabhala, 1998)
2. MCS methodology (Hansen et al, 2003)

Forecasting regressions:
- LHS: log of the volatility candidate
- RHS: RV

MCS: log of the volatility candidates against each other.
Forecasting regression results

<table>
<thead>
<tr>
<th>Volatility Indexes</th>
<th>a_0</th>
<th>a_1</th>
<th>Adj.R^2</th>
<th>χ^2</th>
<th>DW</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVXO</td>
<td>-0.83</td>
<td>1.17</td>
<td>0.62</td>
<td>731.1</td>
<td>1.38</td>
</tr>
<tr>
<td></td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td></td>
</tr>
<tr>
<td>LVVIX</td>
<td>-0.50</td>
<td>1.01</td>
<td>0.57</td>
<td>249.1</td>
<td>1.23</td>
</tr>
<tr>
<td></td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td></td>
</tr>
<tr>
<td>LEVIX</td>
<td>-0.69</td>
<td>1.05</td>
<td>0.43</td>
<td>269.0</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td></td>
</tr>
<tr>
<td>LSVIX</td>
<td>-0.33</td>
<td>0.95</td>
<td>0.59</td>
<td>153.5</td>
<td>1.39</td>
</tr>
<tr>
<td></td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td></td>
</tr>
</tbody>
</table>
MCS results

<table>
<thead>
<tr>
<th>VIX</th>
<th>MSE</th>
<th>p_{Tr}</th>
<th>MCS(p_{Tr})</th>
<th>p_{TSQ}</th>
<th>MCS(p_{TSQ})</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVXO</td>
<td>0.392</td>
<td>0.019</td>
<td>0.019</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>LEVIX</td>
<td>0.304</td>
<td>0.011</td>
<td>0.019</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>LVVIX</td>
<td>0.201</td>
<td>0.006</td>
<td>0.019</td>
<td>0.006</td>
<td>0.006</td>
</tr>
<tr>
<td>LSVIX</td>
<td>0.112</td>
<td>-</td>
<td>1.000</td>
<td>-</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Rohini Grover, Susan Thomas
Liquidity considerations in estimating implied volatility
The liquidity adjusted VIX, SVIX, shows the
1. Smallest bias vis-a-vis the RV,
2. The second best R^2 value in the forecasting regression, and
3. The best performance in the MCS tests.

The vega-weighted VVIX has the second best MCS performance, but has the lowest R^2 in the forecasting regression.

The VXO has the largest bias and the worst MCS performance, but shows the best R^2 fit.

Thus, the SVIX can be taken as an improvement, with
- relatively good performance, and
- the advantage of being easier to implement compared to other existing methods that restrict the set of options used to calculate the VIX value while accounting for illiquidity.