Resiliency
Kempf, Mayston, Gehde-Trapp and Yadav

A Discussion

Venky Panchapagesan
IIM Bangalore
December 2015
Relevance of the Topic

• Extremely important in the post-algo world
 ▫ Relevant to regulators/markets
 • When liquidity provision is voluntary (no affirmative obligations)
 • How much do algos exacerbate shocks?
 • How fast does liquidity reappear after shocks?
 ▫ Relevant to practitioners too
 • Order scheduling is a big deal for algos (How to trade a large order over time?)

• Authors make a very good attempt to capture resiliency and its impact
What is Resiliency?

- **Standard theoretical construct**
 - Trader can be informed or uninformed
 - Prices move after a trade
 - Informed trade – remain at the new level
 - Uninformed trade – come back to the old level
 - Resiliency → speed at which prices come back to the old level after a large uninformed trade

- **Literature definitions**
 - Garbade → ‘new orders come in quickly to restore any order imbalance that may have skewed prices’
 - Kyle → ‘speed at which prices tend to converge to pre-liquidation value’
 - Harris → ‘how quickly prices revert to former levels after they change in response to a large (uninformed) order flow’
 - Foucault, Kadan and Kandel → ‘probability that, after a liquidity shock, the spread reverts to its former level before the next transaction’
A Simple Example

Prices increase but so do spreads \rightarrow relative spreads may therefore remain unchanged

Is the market resilient?
- No (Harris/Kyle)
- Yes (this study)
Resiliency Measure

- Use a mean-reverting process (Ornstein-Uhlenbeck) structure
 - \[(\text{Current Liq} - \text{Past Liq}) = \text{Resiliency} \times (\text{Long-run Liq} - \text{Past Liq}) + \text{error}\]
 - How fast does the market move towards the long run average?
 - Half-life of resiliency \(\rightarrow \ln(2)/\text{resiliency measure}\)
Key Things About Market/Data

- **LSE**
 - Market share around 60% during the sample period
 - Smart order routing – getting the best price was only a fiduciary responsibility and not mandated by regulation like RegNMS in the US

- **Large and liquid stocks (FTSE 100)**
 - Tick sizes could be binding (frequency distribution of absolute spreads in ticks could be an interesting chart to see)
 - Some are cross-listed in other markets

- **Market structure**
 - Tick size – step function on price level
 - Trade size compression (distribution of trade sizes?)
 - Hidden and pegged order availability
 - Auto-refresh capabilities of order routing engines
 - Great level of pinging/cancellations making quotations not too representative of actual conditions

- **Order book data**
 - 5-min order book snapshots
General Comments

• To truly test resiliency (and FKK paper) we may need to examine stocks/days where informed trading is less likely

• Analysis during financial crisis
 ▫ Effect of short selling bans
Minor Comments

- Smaller tick size lowers spreads and not raise spreads as alluded to in the paper (p.19)

- Half-life computation (p.13)

- All equations in paper are numbered as 0