DOES EXPERIENCE MATTER TO INVESTORS?

Evidence from Indian IPOs

Santosh Anagol
Wharton School of Business

Vimal Balasubramaniam
Oxford

Tarun Ramadorai
Oxford and CEPR

December 18, 2014
Overview

- Workhorse economic models assume agents have stable preferences, and well-founded beliefs.
- Recent work suggests that experience strongly affects agents’ behaviour in financial markets.
- Concern: Inferences generally drawn from agents that self-selected into particular portfolios.
- Important remaining questions on mechanism:
 1. Does experience affect beliefs, preferences, information set, or all of the above?
 2. What types of experience matter most? Size, salience
 3. Is this evidence of rational learning or extrapolation (reinforcement learning)?
Disentangling the experience-behaviour correlation

- Standard approach: correlation between investor experience and investor behaviour.
 - But investor experience is endogenous!
- Example: Observed correlation between high past returns and future risk-taking behaviour.
 1. Selection on preferences: Risk seeking investors select risky stocks → experience high returns → buy riskier stocks.
 2. Selection on beliefs: Optimistic investors buy risky stocks → experience high returns → buy riskier stocks.
- Need exogenous variation in experience to eliminate self-selection questions.
- Exogenous variation plus large cross-section of agents: heterogenous treatment effects permit inferences about experience channels.
A neat experiment

- Our approach: exploit randomized variation in experience due to IPO lotteries.
 - How does a randomly allocated return experience affect future behaviour?

- Identification: battery of tests suggest allocations are indeed random
 - Control and treatment groups similar prior to allocation.
 - No omitted variables bias (i.e. preferences, beliefs, or information).

- Data allows us to study effects of experience shock on entire equity portfolio of individual investors.
 - Retail investors matter in India (~15% of market is retail owned).

- Also teaches us about role of luck in asset markets.
 - Workhorse theories (CAPM, factor models) predict luck as unimportant in aggregate.
 - Alternative (behavioural) theories predict role for luck on investor behavior, equilibrium returns.
Unique Indian IPO setting

- **35%** of each IPO *set aside for retail investors*.
- Retail investors: \leq Rs. 100,000 (Rs. 200,000 since Oct 2010).
- Randomized allocation when retail demand $>$ supply (over subscription)
The IPO experiment: An example

- Total issue to retail investors: 10,000 shares.
- Investors can bid for bins of 100, 200, or 300 shares.
- Minimum allocation: 100 shares.
- Over subscription ratio: \(OS = \frac{15,000}{10,000} = 1.5. \)

<table>
<thead>
<tr>
<th>Share category</th>
<th>Total no. applications</th>
<th>Total Demand</th>
<th>Allocation (#1)/OS</th>
<th>% investors allocated</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>100</td>
<td>10000</td>
<td>100</td>
<td>66%</td>
</tr>
<tr>
<td>200</td>
<td>22</td>
<td>4400</td>
<td>133</td>
<td>100%</td>
</tr>
<tr>
<td>300</td>
<td>2</td>
<td>600</td>
<td>200</td>
<td>100%</td>
</tr>
</tbody>
</table>

- 66% of investors chosen at random.
Data
Sample period: 2007-2012

- **180** of the 246 IPOs over the period were over subscribed. We have data on **57** of these.
 - Mean over subscription ratio = 20 (Range: 1 - 60 times).

- Anonymized investor-level portfolio data for the universe of stock market participants in India (aggregated by PAN).

- Investor-level IPO-application data from administrative records of one of the largest share registry firms in India.

- Anonymized matching by providers of application data and portfolio data.
Data: Summary

- **Total number of IPOs: 57**

<table>
<thead>
<tr>
<th></th>
<th>Allotted</th>
<th>Not allotted</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of retail investors (per IPO)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>10,641</td>
<td>19,222</td>
<td>29,862</td>
</tr>
<tr>
<td>Std. dev</td>
<td>19,806</td>
<td>50,961</td>
<td>68,334</td>
</tr>
<tr>
<td>Total no. of retail investors</td>
<td>606,483</td>
<td>1,095,678</td>
<td>1,702,161</td>
</tr>
<tr>
<td>Total no. of unique retail investors</td>
<td>347,658</td>
<td>650,258</td>
<td>997,916</td>
</tr>
</tbody>
</table>
The geography of IPO applicants

Our sample
Randomization check

- Test robustness of randomization process in IPOs.

- Regression specification per IPO share category:
 \[y = \alpha + \beta I(\text{success} = 1) + u \]

- Variable \(y \): Application characteristics.
 - Cut-off bidder
 - Full demand schedule bidder
 - Depository where investor holds an account
 - State of the applicant
 - ASBA as payment mode
 - Cheque as payment mode

- Within each IPO share category, we expect \(\beta \), the mean difference between the two groups to be statistically insignificant.
Randomization check: All characteristics

N = 12,627 Bandwidth = 0.1612
Empirical strategy

Object of interest: ρ

$$y_{ijc,s} = \alpha + \rho_s d_{ijc} + \sum_j \sum_c \gamma_{jc} d_{jc} + \beta X_{ij,t} + \epsilon_{ijc,s}$$

- $H_0 : \rho_s = 0$
 Balance test
 Do not reject $H_0 \forall s \in [-6, -1]$

- Outcome test
 Reject $H_0 \forall s \in [0, 6]$

$y_{ijc,s}$ Outcome variable of interest.

- d_{ijc} Indicator of whether investor was randomly allotted shares.

- d_{jc} Fixed effects for each application share category in each IPO.
The lottery experience
57 IPOs, 2007-2012

<table>
<thead>
<tr>
<th>First day returns (Closing price)</th>
<th>First day price variability (High - Low / Issue *100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean 15.14%</td>
<td>36.52%</td>
</tr>
<tr>
<td>Median 9.28%</td>
<td>28.00%</td>
</tr>
<tr>
<td>Std. Dev. 38.32%</td>
<td>28.56%</td>
</tr>
<tr>
<td>Min -66.45%</td>
<td>5.27%</td>
</tr>
<tr>
<td>Max 178.76%</td>
<td>142.87%</td>
</tr>
</tbody>
</table>
Portfolio weight of IPO security

Non-trivial role in the investor's portfolio

\[y_{ijc,s} = \alpha + \rho_s d_{ijc} + \sum_j \sum_c \gamma_{jc} d_{jc} + \beta X_{ij,t} + \epsilon_{ijc,s} \]
Experience effects on purchase

\[y_{ijc} = I(\text{No. of securities purchased (Non-IPO security)} > 0) \]
Experience effect on sale

\[y_{ijc} = I(\text{No. of securities sold (Non-IPO security)} > 0) \]
Experience effect on future IPO application

\[y_{ijc} = I(\text{IPO application} > 0) \]
Experience effect on realized gains

\[y_{ijc} = \text{Percentage of gains realized (Non-IPO security)} \]
Experience effect on realized losses

\[y_{ijc} = \text{Percentage of losses realized (Non-IPO security)} \]
Experience effect on disposition

\[y_{ijc} = \text{Disposition (Non-IPO security)} \]
Effects across IPOs

\[y_{ijc} = I(\text{No. of applications to future IPO} > 0) \]
Effects across IPOs

\[y_{ijc} = I(\text{Purchase activity in the market} > 0) \]
Conclusion

- Using exogenous variation in experience, confirm strong effects on a range of investor behaviours.
 - Effects on trading behaviour (turnover) suggests belief channel is important.

- Next steps:
 - Heterogeneous treatment effects on large and small accounts to explore risk aversion effects (preferences).
 - Heterogeneous treatment effects on type of bid to explore optimism effects (beliefs).
 - Explore variation across IPOs to further understand what types of experience matter most (information).

- Aggregation: While we have treated effects as atomistic, 1.7 million investors with an average 1% effect size can affect equilibrium.