Market quality in the time of algorithmic trading

Nidhi Aggarwal Susan Thomas
IGIDR Finance Research Group

Presentation at the 4th Emerging Markets Finance conference,
Bombay

21 December, 2013
The problem

- Since 2000, escalating use of technology in trading on equities markets.
- AT now dominates exchanges worldwide. Concerns about reduced liquidity, ‘flash crashes’, etc.
- Regulators all over the world are contemplating interventions on AT.
- In search of finding a market failure that justifies regulatory intervention, numerous researchers have asked: What is the effect of AT on liquidity and volatility?
- Main findings: AT generally lowers transactions costs. AT may or may not improve depth. AT may or may not lower volatility.
- Weaknesses of this literature.
The problem

- Since 2000, escalating use of technology in trading on equities markets.
- AT now dominates exchanges worldwide. Concerns about reduced liquidity, ‘flash crashes’, etc.
- Regulators all over the world are contemplating interventions on AT.
- In search of finding a market failure that justifies regulatory intervention, numerous researchers have asked: What is the effect of AT on liquidity and volatility?
- Main findings: AT generally lowers transactions costs. AT may or may not improve depth. AT may or may not lower volatility.
- Weaknesses of this literature.
The problem

- Since 2000, escalating use of technology in trading on equities markets.
- AT now dominates exchanges worldwide. Concerns about reduced liquidity, ‘flash crashes’, etc.
- Regulators all over the world are contemplating interventions on AT.
 - In search of finding a market failure that justifies regulatory intervention, numerous researchers have asked: What is the effect of AT on liquidity and volatility?
 - Main findings: AT generally lowers transactions costs. AT may or may not improve depth. AT may or may not lower volatility.
 - Weaknesses of this literature.
The problem

Since 2000, escalating use of technology in trading on equities markets.

AT now dominates exchanges worldwide. Concerns about reduced liquidity, ‘flash crashes’, etc.

Regulators all over the world are contemplating interventions on AT.

In search of finding a market failure that justifies regulatory intervention, numerous researchers have asked: What is the effect of AT on liquidity and volatility?

Main findings: AT generally lowers transactions costs. AT may or may not improve depth. AT may or may not lower volatility.

Weaknesses of this literature.
The problem

- Since 2000, escalating use of technology in trading on equities markets.
- AT now dominates exchanges worldwide. Concerns about reduced liquidity, ‘flash crashes’, etc.
- Regulators all over the world are contemplating interventions on AT.
- In search of finding a market failure that justifies regulatory intervention, numerous researchers have asked: What is the effect of AT on liquidity and volatility?
- Main findings: AT generally lowers transactions costs. AT may or may not improve depth. AT may or may not lower volatility.
- Weaknesses of this literature.
Solving the weaknesses of the literature

A design that solves the weaknesses of the literature:

1. *Clean microstructure*: An exchange with 80% market share of all trading, one of the largest exchange in the world by transaction intensity.

2. *An exogenous event*: Introduction of co-location services in Jan 2010, which was followed by an S-curve of adoption.

3. *Recording data well*: Perfect data with every order tagged as “AT” or “non-AT” for every security at the exchange.
Methodology

- Use the AT flag on the orders and trades to measure the AT intensity, both security specific and market average.
- Use the introduction of co-location services (CO-LO) — January 2010 — to divide the time period into low and high AT-INTENSITY periods.
- Pick a sample of one month from the period of low and from the high AT-INTENSITY as the LOW-AT and HIGH-AT samples.
- The difference between the market quality in the HIGH-AT and LOW-AT samples can be attributed to the rise of AT.
- Control for changes in other things such as macroeconomic conditions.
Methodology

- Use the AT flag on the orders and trades to measure the AT intensity, both security specific and market average.
- Use the introduction of co-location services (CO-LO) – January 2010 – to divide the time period into low and high AT-INTENSITY periods.
- Pick a sample of one month from the period of low and from the high AT-INTENSITY as the LOW-AT and HIGH-AT samples.
- The difference between the market quality in the HIGH-AT and LOW-AT samples can be attributed to the rise of AT.
- Control for changes in other things such as macroeconomic conditions.
Methodology

- Use the AT flag on the orders and trades to measure the AT intensity, both security specific and market average.
- Use the introduction of co-location services (CO-LO) – January 2010 – to divide the time period into low and high AT-INTENSITY periods.
- Pick a sample of one month from the period of low and from the high AT-INTENSITY as the LOW-AT and HIGH-AT samples.
- The difference between the market quality in the HIGH-AT and LOW-AT samples can be attributed to the rise of AT.
- Control for changes in other things such as macroeconomic conditions.
Methodology

- Use the AT flag on the orders and trades to measure the AT intensity, both security specific and market average.
- Use the introduction of co-location services (CO-LO) – January 2010 – to divide the time period into low and high AT-INTENSITY periods.
- Pick a sample of one month from the period of low and from the high AT-INTENSITY as the LOW-AT and HIGH-AT samples.
- The difference between the market quality in the HIGH-AT and LOW-AT samples can be attributed to the rise of AT.
- Control for changes in other things such as macroeconomic conditions.
Methodology

- Use the AT flag on the orders and trades to measure the AT intensity, both security specific and market average.
- Use the introduction of co-location services (CO-LO) – January 2010 – to divide the time period into low and high AT-INTENSITY periods.
- Pick a sample of one month from the period of low and from the high AT-INTENSITY as the LOW-AT and HIGH-AT samples.
- The difference between the market quality in the HIGH-AT and LOW-AT samples can be attributed to the rise of AT.
- Control for changes in other things such as macroeconomic conditions.
What we find

- AT-INTENSITY in the market rose significantly after the introduction of co-lo but stabilised with a significant lag.
- On average, the intra-day market quality measures
 - Improved: transactions costs (spread, impact cost), risk (intraday volatility, volatility of impact cost).
 - Worsened: depth (either as value or as number of shares) available for trade, order imbalance.
What we find

- AT-INTENSITY in the market rose significantly after the introduction of co-lo but stabilised with a significant lag.
- On average, the intra-day market quality measures
 - Improved: transactions costs (spread, impact cost), risk (intraday volatility, volatility of impact cost).
 - Worsened: depth (either as value or as number of shares) available for trade, order imbalance.
Implementation details
Data

- Period:
 - Pre co-lo: Jan ’09 to Dec ’09
 - Post co-lo: Jul ’12 to Aug ’13

- Sample of stocks: CNX100 (as in 2012)

- Sample period analysed: (One month sample)
 - LOW-AT PERIOD: Jul 6, 2009 to Aug 8, 2009 (23 trading days)
 - HIGH-AT PERIOD: Jul 6, 2012 to Aug 8, 2012 (25 trading days)

- Frequency used: Tick by tick.

- Data Source: NSE, India
AT intensity between 2009-13

Start of
Pre co-lo co-lo Post co-lo

2009 2010 2011 2012 2013
10 20 30 40 50 60 70
AT Intensity (%)
Concentration of AT across stocks
Market quality measures

- **Liquidity**
 1. **Transactions costs**
 1.1 QSPREAD (in %): \((\text{Best Ask Price} - \text{Best Sell Price}) \times 100 / \text{Mid-quote price}\).
 1.2 IC (%): at the transaction size of Rs 25,000.
 2. **Depth**
 2.1 TOP1DEPTH (in Rs.): Rupee depth available at the best bid and ask prices.
 2.2 TOP5DEPTH (in Rs.): Cumulated Rupee depth available at top five best bid and ask prices.
 2.3 DEPTH (# of shares): Average of the outstanding buy side and sell side number of shares.
 2.4 |OIB| (in %): Difference in buy and sell side depth as a percentage of the total depth, on average.

- **Volatility**
 1. LRISK: Standard deviation of IC in five-minutes interval.
 2. RVOL: Standard deviation of five-minutes returns.

- **Efficiency**
 1. VR: Ratio of ten minutes variance of returns to five minute returns
Market quality measures

▶ Liquidity
1. Transactions costs
 1.1 QSPREAD (in %): \((\text{Best Ask Price} - \text{Best Sell Price}) \times 100 / \text{Mid-quote price}\).
 1.2 IC (%): at the transaction size of Rs 25,000.

2. Depth
 2.1 TOP1DEPTH (in Rs.): Rupee depth available at the best bid and ask prices.
 2.2 TOP5DEPTH (in Rs.): Cumulated Rupee depth available at top five best bid and ask prices.
 2.3 DEPTH (# of shares): Average of the outstanding buy side and sell side number of shares.
 2.4 |OIB| (in %): Difference in buy and sell side depth as a percentage of the total depth, on average.

▶ Volatility
1. LRISK: Standard deviation of IC in five-minutes interval.
2. RVOL: Standard deviation of five-minutes returns.

▶ Efficiency
1. VR: Ratio of ten minutes variance of returns to five minute returns
Market quality measures

▶ Liquidity
1. Transactions costs
 1.1 QSPREAD (in %): \((\text{Best Ask Price} - \text{Best Sell Price}) \times 100 / \text{Mid-quote price}\).
 1.2 IC (%): at the transaction size of Rs 25,000.

2. Depth
 2.1 TOP1DEPTH (in Rs.): Rupee depth available at the best bid and ask prices.
 2.2 TOP5DEPTH (in Rs.): Cumulated Rupee depth available at top five best bid and ask prices.
 2.3 DEPTH (# of shares): Average of the outstanding buy side and sell side number of shares.
 2.4 |OIB| (in %): Difference in buy and sell side depth as a percentage of the total depth, on average.

▶ Volatility
1. LRISK: Standard deviation of IC in five-minutes interval.
2. RVOL: Standard deviation of five-minutes returns.

▶ Efficiency
1. VR: Ratio of ten minutes variance of returns to five minute returns
Methodology

- Identify an exogenous event that affected AT intensity in the markets: co-location facilities.

- Two approaches:
 1. Comparative analysis of average levels of market quality variables in the LOW-AT and HIGH-AT period.
 2. Cross sectional analysis using fixed effects model (Model 1):

\[
\text{MKT-QUALITY}_{i,t} = \alpha_i + \beta_1 \text{AT-INTENSITY}_{i,t-1} + \beta_2 \text{COLO-DUMMY}_t + \epsilon_{i,t}
\]

where ‘t’ = 1…T indexes of five minute time intervals

\[
\text{COLO-DUMMY}_t = \begin{cases}
1 & \text{if ‘t’ } \in \text{ Post co-lo period} \\
0 & \text{otherwise}
\end{cases}
\]
Methodology

- Identify an exogenous event that affected AT intensity in the markets: co-location facilities.

- Two approaches:
 1. Comparative analysis of average levels of market quality variables in the LOW-AT and HIGH-AT period.
 2. Cross sectional analysis using fixed effects model (Model 1):

\[
\text{MKT-QUALITY}_{i,t} = \alpha_i + \beta_1 \text{AT-INTENSITY}_{i,t-1} + \beta_2 \text{COLO-DUMMY}_t + \epsilon_{i,t}
\]

where ‘t’ = 1…T indexes of five minute time intervals

\[
\text{COLO-DUMMY}_t = \begin{cases}
1 & \text{if ‘t’ } \in \text{Post co-lo period} \\
0 & \text{otherwise}
\end{cases}
\]
Threats to validity
How to control for the changes in macroeconomic conditions?

1. Regression based approach:

\[
\text{MKT-QUALITY}_{i,t} = \alpha_i + \beta_1 \text{CO-LO-DUMMY}_t + \beta_2 \text{AT-INTENSITY}_{i,t-1} + \beta_3 \text{NIFTY-VOL}_t + \epsilon_{i,t}
\]

where \(\text{NIFTY-VOL}_{i,t}\) is the variance of five-minute returns on the market index.

2. Matched sample approach:
 - Pick dates in the post co-lo period when market volatility matched the levels in the pre co-lo period.
 - Matched Sample: 41 dates in each period.
How to control for the changes in macroeconomic conditions?

1. Regression based approach:

\[\text{MKT-QUALITY}_{i,t} = \alpha_i + \beta_1 \text{CO-LO-DUMMY}_t + \beta_2 \text{AT-INTENSITY}_{i,t-1} + \beta_3 \text{NIFTY-VOL}_t + \epsilon_{i,t} \]

where \(\text{NIFTY-VOL}_{i,t} \) is the variance of five-minute returns on the market index.

2. Matched sample approach:
 - Pick dates in the post co-lo period when market volatility matched the levels in the pre co-lo period.
 - Matched Sample: 41 dates in each period.
Results
Comparing liquidity costs in the HIGH-AT & LOW-AT sample
Depth behavior in the HIGH-AT & LOW-AT period

![Graphs showing depth behavior in the HIGH-AT & LOW-AT period.](image)
.. and the volatility measures

![LRISK graph]

![RVOL graph]
Results: Effect of AT on market quality variables

\[M1: \text{MKT-QUALITY}_{i,t} = \alpha_i + \beta_1 \text{AT-INTENSITY}_{i,t-1} + \beta_2 \text{CO-LO-DUMMY}_t + \epsilon_{i,t} \]

Panel A: Transactions costs and Rupee depth

<table>
<thead>
<tr>
<th></th>
<th>QSPREAD</th>
<th>IC</th>
<th>TOP1DEPTH</th>
<th>TOP5DEPTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT-INTENSITY</td>
<td>-0.01⁺</td>
<td>-0.01⁺</td>
<td>-0.09⁺</td>
<td>-0.17⁺</td>
</tr>
<tr>
<td></td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.02)</td>
<td>(0.01)</td>
</tr>
<tr>
<td>CO-LO-DUMMY</td>
<td>-0.01⁺</td>
<td>-0.01⁺</td>
<td>-0.81⁺</td>
<td>-0.46⁺</td>
</tr>
<tr>
<td></td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.01)</td>
<td>(0.01)</td>
</tr>
<tr>
<td>Obs.</td>
<td>315,115</td>
<td>315,115</td>
<td>315,115</td>
<td>315,115</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.10</td>
<td>0.07</td>
<td>0.24</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Panel B: Depth and Volatility

| | DEPTH | \(|OIB| \) | LRISK | RVOL |
|----------------|---------|------|--------|--------|
| AT-INTENSITY | 0.10⁺ | 4.54⁺| -0.001**| -5.15⁺ |
| | (0.01) | (0.49)| (0.000) | (1.12) |
| CO-LO-DUMMY | 0.35⁺ | -30.18⁺| -0.01⁺ | -46.40⁺ |
| | (0.01) | (0.96)| (0.00) | (1.77) |
| \(R^2 \) | 0.18 | 0.26 | 0.20 | 0.26 |
Dealing with threats to validity

M1: \(\text{MKT-QUALITY}_{i,t} = \alpha_i + \beta_1 \text{AT-INTENSITY}_{i,t-1} + \beta_2 \text{CO-LO-DUMMY}_t + \epsilon_{i,t} \)

M4: \(\text{MKT-QUALITY}_{i,t} = \alpha_i + \beta_1 \text{AT-INTENSITY}_{i,t-1} + \beta_2 \text{CO-LO-DUMMY}_t \\
+ \beta_3 \text{NIFTY-VOL}_t + \beta_4 \text{INTRADAY-DUMMY}_t + \beta_5 \text{LTP}_{i,t} + \epsilon_{i,t} \)

<table>
<thead>
<tr>
<th>Value of (\hat{\beta}_1)</th>
<th>One month sample</th>
<th>Matched sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>QSPREAD</td>
<td>-0.01(^+)</td>
<td>-0.01(^+)</td>
</tr>
<tr>
<td>IC</td>
<td>-0.01(^+)</td>
<td>-0.01(^+)</td>
</tr>
<tr>
<td>TOP1DEPTH</td>
<td>-0.09(^+)</td>
<td>-0.10(^+)</td>
</tr>
<tr>
<td>TOP5DEPTH</td>
<td>-0.17(^+)</td>
<td>-0.17(^+)</td>
</tr>
<tr>
<td>DEPTH</td>
<td>0.10(^+)</td>
<td>0.12(^+)</td>
</tr>
<tr>
<td>OIB</td>
<td>4.54(^+)</td>
<td>4.91(^+)</td>
</tr>
<tr>
<td>RVOL</td>
<td>-5.15(^+)</td>
<td>-2.56(^+)</td>
</tr>
<tr>
<td>LRISK</td>
<td>-0.001(^{**})</td>
<td>-0.00</td>
</tr>
</tbody>
</table>
Conclusion

- The world has shifted from manual to computer-supported trading in a stunningly short time
- A major new phenomenon that requires analysis
- All the regulators of the world are interested
- Numerous existing papers, but three flaws: (a) Fragmented microstructure (b) Endogenous adoption of AT and (c) Lack of underlying data infrastructure.
- Our research design solves these three problems, and reports on one of the biggest exchanges of the world by order intensity.
- Matching-based strategy that controls for changes in macroeconomic conditions.
- Main result: AT is good for market quality but depth visible goes down.
Thank you

Comments / Questions?

http://www.ifrogs.org/