Liquidity considerations in estimating implied volatility

Rohini Grover Susan Thomas

Presentation at the 7th conference of Asia-Pacific Association of Derivatives

26 August, 2011

Do we need a new implied volatility estimation methodology?

- The first method: ATM options, equally weighted. (CBOE VXO)
- New method: ATM+OTM options, weights are free of a specific option pricing model. (CBOE VIX)
- Why search for a new method?

Liquidity matters

- Financial markets deliver good prices when liquidity is robust.
- Recently, there have been instances of market liquidity freezing up (eg. 6th May Flash Crash; Sep 2008, Global Financial crisis).
- Market prices are particularly crucial then; but they have to be adjusted for vanishing liquidity.
- Even more constant, cross-sectional variation in liquid for futures and options is high.
- This is a global phenomenon, not one restricted to emerging economies

An approach adjusting for cross-sectional liquidity

- Use all options that gives a current market price.
- Near-month and next-month maturities.
- Weight is a simple inverse of percentage spread.
- The liquidity adjusted VIX, SVIX is estimated as :

$$\sigma_{tj} = \frac{\sum_{i} w_{it,j} \sigma_{it}}{\sum_{i} w_{it,j}}$$

$$w_{it,j} = \frac{1}{s_{it,j}}$$

- Where, $s_{it,j}$ is the spread of the j^{th} option at time t, and i is the maturity of the option, varying between near and next-month.
- This weight incorporates cross-sectional variation in liquidity, automatically adjusts the lower weights for illiquid options.

Performance evaluation

- Candidates competiting with SVIX:
 - VXO.
 - Vega-weighted VIX (VVIX),
 - Selasticity-of-volatility-weighted VIX (EVIX)
- Benchmark: Realised volatility (RV) using intra-day returns at one-minute intervals, scaled up to a daily volatility measure.

Performance evaluations

- Evaluations based on:
 - Forecasting regressions (Christensen and Prabhala, 1998)
 - MCS methodology (Hansen et al, 2003)
- Forecasting regressions:
 - LHS: log of the volatility candidate
 - RHS: RV
- MCS: log of the volatility candidates against each other.

Forecasting regression results

Volatility Indexes	a ₀	a ₁	Adj.R ²	χ^2	DW
LVXO	-0.83	1.17	0.62	731.1	1.38
	(0.00)	(0.00)		(0.00)	
LVVIX	-0.50	1.01	0.57	249.1	1.23
	(0.00)	(0.00)		(0.00)	
LEVIX	-0.69	1.05	0.43	269.0	0.99
	(0.00)	(0.00)		(0.00)	
LSVIX	-0.33	0.95	0.59	153.5	1.39
	(0.00)	(0.00)		(0.00)	

MCS results

VIX	MSE	p_{T_r}	$MCS(p_{T_r})$	$p_{T_{SQ}}$	$MCS(p_{T_{SQ}})$
LVXO	0.392	0.019	0.019	0.000	0.000
LEVIX	0.304	0.011	0.019	0.000	0.000
LVVIX	0.201	0.006	0.019	0.006	0.006
LSVIX	0.112	-	1.000	-	1.000

Conclusion

- The liquidity adjusted VIX, SVIX, shows the
 - Smallest bias vis-a-vis the RV,
 - The second best R² value in the forecasting regression, and
 - The best performance in the MCS tests.
- The vega-weighted VVIX has the second best MCS performance, but has the lowest R² in the forecasting regression.
- The vxo has the largest bias and the worst MCS performance, but shows the best R² fit.
- Thus, the SVIX can be taken as an improvement, with
 - relatively good performance, and
 - the advantage of being easier to implement compared to other existing methods that restrict the set of options used to calculate the VIX value while accounting for illiquidity.

