

Systemic Microstructure Risks of High Speed Trading Pankaj Jain, Pawan Jain, and Thomas H. McInish

Presented by: **Pawan Jain**

Email: jain1p@cmich.edu Cell #: 307-220-1900 Web:<u>https://</u> umdrive.memphis.edu/pjain1/public/PawanJain.html

Implementing Arrowhead: Natural Experiment

Event:

- January 4, 2010 Tokyo Stock Exchange (TSE) launches enhanced trading platform: "Arrowhead"
- > 1500x Increase in System Speed vs. Prior System
 - Order processing latency reduced to 3 milliseconds
 - No more delayed trading (Lehmann and Modest, 1994; Ahn, Hamao and Ho, 2002; Uno and Shibata, 2012)

<u>Outcome:</u>

HFT increased from 0% of total TSE trade volume to 36% within 24 months

How does low latency effect Market Quality?

Institutional Details

- Total listed market cap over \$3 trillion
 - largest stock exchange headquartered outside the US
 NYSE Euronext /TSE agreement: linked network access
- Electronic automated trading system
 - two trading sessions: 0900–1100 and 1230–1500
 - Purely order-driven market.
 - No "Upstairs Market" => no hidden orders
 - Varying tick sizes and minimum trading
- Not Fragmented (TSE has 91% of total volume)
 Ideal non-fragmented set-up to study pure effects
- Chan, Hamao & Lakonishok, 1991; Bremer, Hiraki, & Sweeney, 1997; Ahn, Hamao, & Ho, 2002

Low Latency Trading and Market Quality

- Does Arrowhead increase or decrease cost of immediacy?
 - ✓ (Foucault, Röell, and Sandas, 2003) Vs. (Rosu, 2009; Boehmer, Saar and Yu, 2005)
 - ✓ R1: Arrowhead decreases COI
- ✓ Does Arrowhead increase or reduce volatility?
 - ✓ (Hendershott, Jones, and Menkveld, 2011; Hendershott and Moulton, 2011) Vs. (Brogaard, 2010; Hasbrouck and Saar, 2012)
 - ✓ R2: Arrowhead decreases volatility

HFT and Microstructure Risk

✓ Systemic risks

✓ CoVaR (Adrian & Brunnermeier, 2011); CoVaQ

Shock Propagation risks

✓ Autocorrelation:

✓ Parlour (1998) Vs. Biais, Hillion, and Spatt (1995)

✓ Cross correlation:

✓ Barker (2006) Vs. Chordia, Roll, & Subhramanyam (2000)

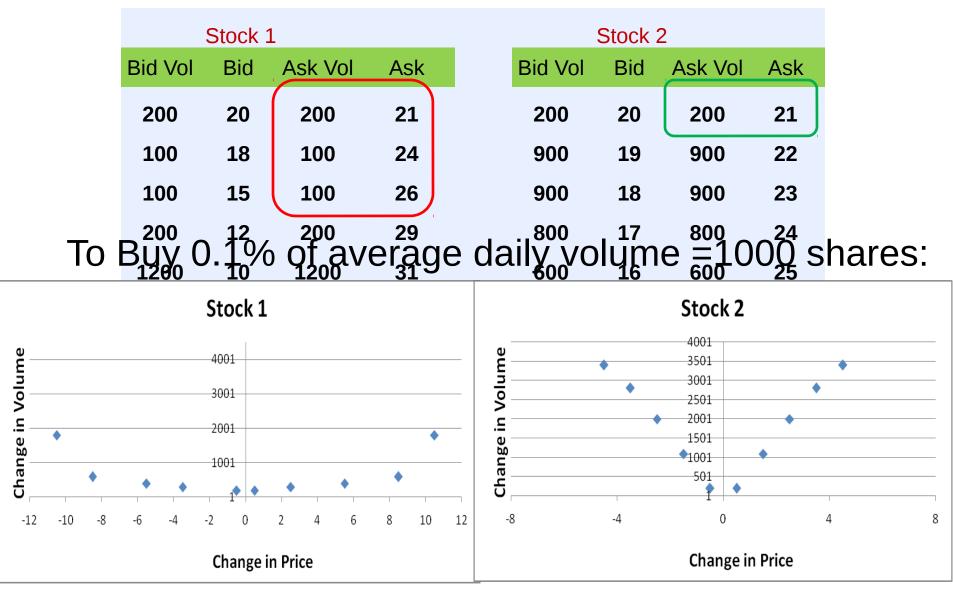
✓ Quote stuffing risks: Quotes-to-trades Ratio

 ✓ runs in process (Hasbrouck and Saar, 2013), Message traffic (Hendershott, Jones, and Menkveld, 2011)

Low Latency and Evolution of LOB

- Does low latency effect the future evolution of the LOB?
 - ✓ Price Placement
 - ✓ COI's effect on market quality measures
- Rosu's (2009) theory of Attrition:
 Does lower COI in faster markets attract Fleeting orders?

Best Quotes



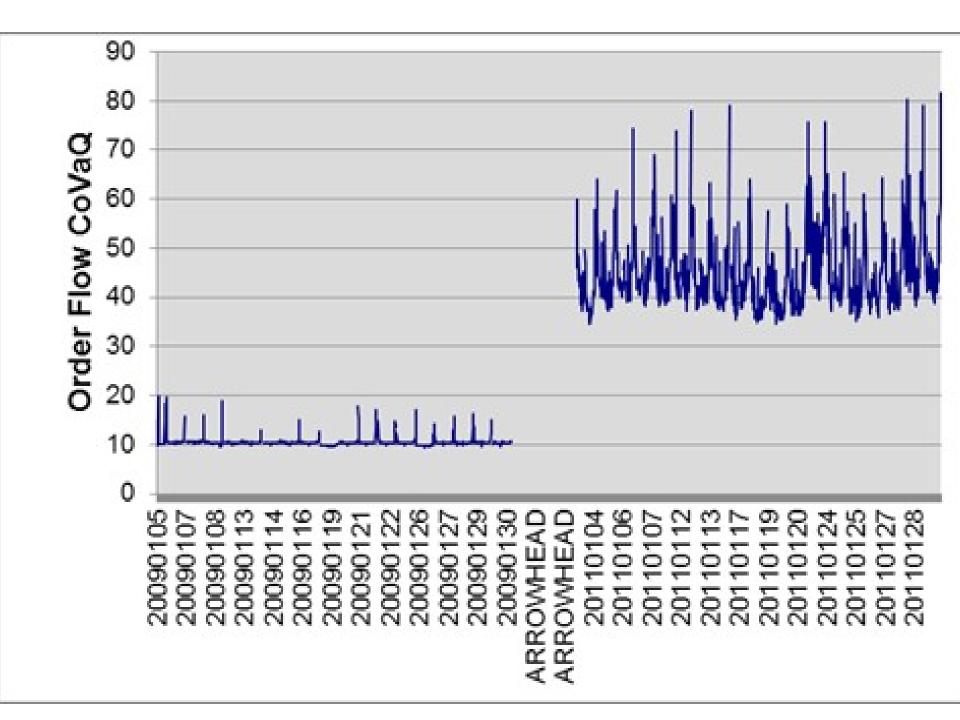
Both stocks are equally liquid?

Traditional Liquidity Measures:

- 1. Bid-Ask Spread
- 2. Depth
- 3. Volume

Complete Limit Order Book

Liquidity Measures


$$\checkmark \text{ Limit Order Book Slope:} (Naes & Skjeltorp, 2006) DE_{i,r} = \frac{1}{N_B} \left\{ \frac{v_1^B}{\left| p_1^B / p_0 - 1 \right|} + \sum_{\tau=1}^{N_B - 1} \frac{v_{\tau+1}^B / v_{\tau}^B - 1}{\left| p_{\tau+1}^B / p_{\tau}^B - 1 \right|} \right\}$$
$$\checkmark \text{ LOB Cost of Immediacy} (Benston, Irvine, and Kandel, 2002) Cost-to-Trade_i = \frac{\sum_{k=1}^{K} I_k^{bo} (Midquote - P_k^{bo}) + \sum_{k=1}^{K} I_k^{bo} (P_k^{bol} - Midquote)}{T \times Midquote}$$

- Traditional Measures: Proportionate Spreads, Depth, Number of Trades, Average Trade Size.
- ✓ Advanced measures: Quotes-to-trade ratio (Hasbrouck and Saar, 2012; Hendershott, Jones, and Menkveld, 2011)

DATA

- 150 TSE first section firms before & after Arrowhead
 - June 2008 pre-crisis, January 2009, and January 2011.
 - 50 large-, 50 mid-, and 50 small-cap TOPIX firms
 - Source: Nikkei Digital Media Inc.'s Nikkei Economic Electronic Database Systems (NEEDS)
- Limit Order Book Data: info. on each order and trade, date and time, stock code, order/trade price, order/trade volume, 5 best bid and ask quotes and sizes (Sample).
- Intraday analysis: Data aggregated at 1 minute frequency.

	(1)	(2) (3)		(4)	(5)
	Pre-	Arrowhead			
	Crisis	Pre	Post	(3) – (2)	(3) - (1)
Trading Risk Meas	sures				
AUTOCORR	0.03	0.02	0.11	0.09**	0.08**
CROSSCORR	0.02	-0.03	0.04	0.07**	0.02
QSR	2.74	2.89	6.69	3.80**	0.95**
ΔCOVAR	-0.10	-0.07	0.10	0.17**	0.22**
ΔCOVAQ	9.57	10.3	44.2	33.9**	34.6**
Market Quality M	easures				
COI (basis pts)	51.2	59.5	28.4	-31.1**	-22.9**
SLOPE	19.6	20.4	20.7	0.29**	1.12*
SPREAD (%)	0.22	0.23	0.16	-0.07*	-0.06*
DEPTH ('000)	32.8	44.9	258	213**	225**
VOLUME	95.0	93.7	109.9	16.1**	14.9**
NTRDS	4.08	7.34	11.2	3.81**	7.07**
SIZE	4,185	3,800	3,132	-668**	-1,05**
TRADESPEED	0.07	0.08	0.12	0.04**	0.05**

				, ,		
Panel A. Impact of Arrowhead on COI						
Variables	All firms	%t (%sign)	Large cap	Mid cap	Small cap	
ARROWHEAD	-3.55*	98 (95)	-4.53*	-2.89*	-1.92*	
LOG PRICE	-2.44*	95 (89)	-2.86*	-2.29*	-2.35*	
LOG NTRDS	1.84*	80 (71)	3.83*	2.06*	0.91*	
VOLATILITY	4.30*	100 (99)	4.64*	4.23*	3.89*	
LOG VOL	-2.04*	84 (74)	-5.07*	-1.54*	-1.96*	
MKTRET	-0.14	46 (60)	-0.21	-0.18	-0.01	
HIGHSPEED	-0.21	75 (53)	-1.06*	-0.12	0.78*	
LOWSPEED	1.17	42 (74)	2.07*	1.17	-0.33	
ADJ R ²	0.148		0.114	0.121	0.174	
Panel B. Impact of A	Arrowhead on J	SLOPE				
ARROWHEAD	2.31*	93 (97)	3.39*	2.22*	1.84*	
LOG PRICE	2.31*	89 (93)	3.07*	2.34*	1.71*	
LOG NTRDS	-0.41	40 (68)	-0.58	-0.44	-0.16	
VOLATILITY	-2.93*	100 (99)	-5.38*	-3.92*	-2.32*	
LOG VOL	2.14*	76 (86)	4.04*	1.82*	0.44	
MKTRET	0.08	13 (51)	0.12	0.06	0.07	
HIGHSPEED	-0.01	55 (52)	0.27	0.18	-0.47	
LOWSPEED	-0.19	18 (64)	-0.44*	-0.32	0.22	
ADJ R ²	0.139		0.167	0.126	0.112	
· · · ·					•	

Cross-correlation

- Lower cross correlation during highly liquid markets (Baker and Wurgler, 2006).
- ✓ Higher Cross correlation (Chordia, Roll, and Subrahmanyam, 2000; Hasbrouck and Seppi, 2001)
 H1:Low Latency increases Cross-correlation due to increase in program trading

LOB COI Predicts future Cross Correlation

CROSSCORRi,t+1 = αi + $\beta 1iCOIi,t$ + $\beta 2iSLOPEi,t$ + $\beta 3i$ NTRDSi,t + $\beta 4i$ ATSi,t + $\beta 5i$ SPREADi,t + $\beta 6i$ DEPTHi,t + $\beta 7i$ TRADING SPEEDi,t + $\beta 8i$ VOLATILITYi,t + $\beta 9i$ RETURNi,t + $\beta 10i$ ARROWHEADi,t + $\beta 11i$ MKTRETi,t + $\beta 12i$ ARROWHEADi,t*COIi,t + $\beta 13i$ ARROWHEADi,t*SLOPEit + $\mu i,t+1$

Variables	(β)	%t (%sign)
ARROWHEAD	0.91*	64 (79)
COI	0.41*	72 (65)
SLOPE	-0.22*	50 (62)
ARROW*COI	0.38	18 (71)
ARROW*SLOPE	-0.14	28 (66)

ARROWHEAD increased Cross correlation The higher the COI, the higher is the Cross correlation

LOB COI Predicts the future Quotes-to-trade ratio

QUOTES-TO-TRADE RATIOi,t+1 = $\alpha i + \beta 1 i$ COIi,t+ $\beta 2 i$ SLOPEi,t+ $\beta 3 i$ MONDAYt+1+ $\beta 4 i$ NTRDSi,t+ $\beta 5 i$ ATSi,t+ $\beta 6 i$ SPREADi,t+ $\beta 7 i$ DEPTHi,t+ $\beta 8 i$ VOLATILITYi,t + $\beta 9 i$ MKTRETi,t + $\beta 10 i$ ARROWHEADi,t + $\beta 11 i$ ARROWHEADi,t*COIi,t + $\beta 12 i$ ARROWHEADi,t*SLOPEit + μi ,t+1

Variables	(β)	%t (%sign)
ARROWHEAD	2.59*	88 (97)
COI	-1.31*	64 (72)
SLOPE	2.03*	79 (92)
ARROW*COI	-1.54*	81 (88)
ARROW*SLOPE	2.33*	83 (96)

ARROWHEAD increased Quote-to-trade ratio; strengthens COI =>Quotes-to-trade ratio relation.

Higher COI => Lower Quotes-to-trade ratio

$$VAX_{i,t} = \alpha_i + \beta_i S_{t-1}$$

$$VAX_{MKT,t} = \alpha_{MKT} + \beta_{MKT} S_{t-1}$$

$$COVAX_{i,t} = \alpha_{MKT|i} + \beta_{MKT|i} S_{t-1} + \gamma_{MKT|i} VAX_{i,t}$$

$$\Delta COVAX_{i,t} = COVAX_{i,t} - VAR_{MKT,t}$$

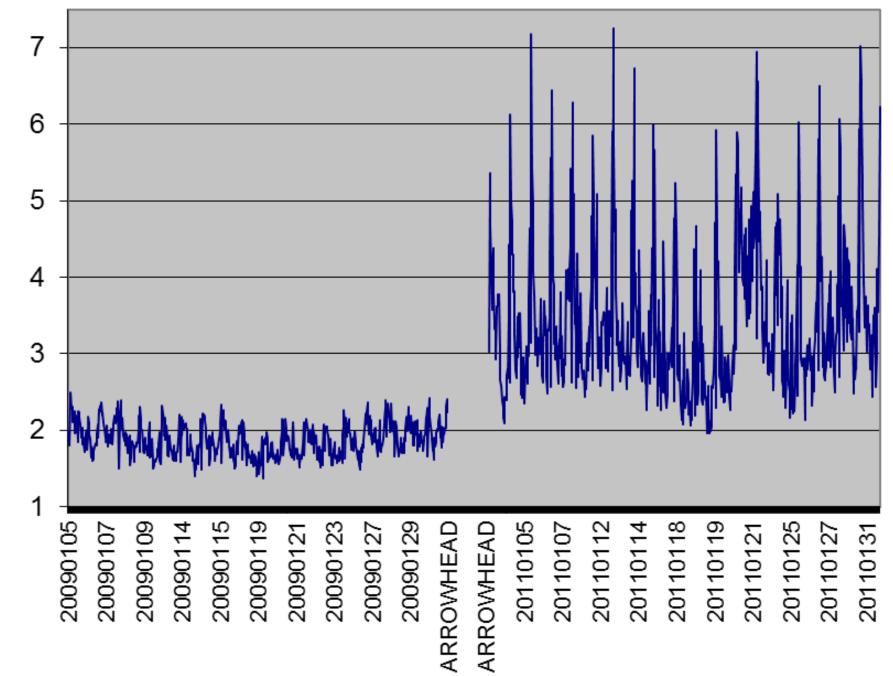
where $\Delta COVAX_{i,t}$ denotes the difference between the VAX of the stock market conditional on the illiquidity risk of a particular stock *i*, $COVAX_i$, and the unconditional VAX of the stock market, i.e., $VaR_{MKT,t}$. Hence, $\Delta CoVaX_{i,t}$ serves as a measure of how much a stock adds to overall systemic risk.

LOB COI Predicts the future CoVaQ

Xi,t + 1 = αi + $\beta 0 i$ ARROWHEADi,t + $\beta 1 i COIi,t$ + $\beta 2 i SLOPEi,t$ + $\beta 3 i$ NTRDSi,t + $\beta 4 i$ ATSi,t + $\beta 5 i$ SPREADi,t + $\beta 6 i$ DEPTHi,t + $\beta 7 i VOLATILITY i,t$ + $\beta 8 i RETURN i,t$ + $\beta 9 i$ HIGHSPEEDi,t + $\beta 10 i$ LOWSPEEDi,t + $\beta 11 i$ ARROWHEADi,t*COIi,t + $\beta 12 i$ ARROWHEADi,t*SLOPEit + $\mu i,t$ + 1

Variables	(β)	%t (%sign)
ARROWHEAD	1.21*	77(88)
COI	1.08*	85(81)
SLOPE	-0.36	48(71)
ARROW*COI	1.96*	82(88)
ARROW*SLOPE	-1.18*	66(78)

ARROWHEAD increased CoVaQ


Fleeting orders

Rosu (2009): when the LOB is full, traders play a "game of attrition" H1: Low Latency facilitates fleeting orders.

LOB COI Predicts the fleeting orders

FLEETi,t+1 = αi + $\beta 1iCOIi$,t + $\beta 2iSLOPEi$,t + $\beta 3i$ NTRDSi,t + $\beta 4i$ ATSi,t + $\beta 5i$ SPREADi,t + $\beta 6i$ DEPTHi,t + $\beta 7i$ TRADING SPEEDi,t + $\beta 8i$ VOLATILITYi,t + $\beta 9i$ RETURNi,t + $\beta 10i$ ARROWHEADi,t + $\beta 11i$ MKTRETi,t + $\beta 12i$ ARROWHEADi,t*COIi,t + $\beta 13i$ ARROWHEADi,t*SLOPEit + μi ,t+1

Variables	(β)	%t (%sign)
ARROWHEAD	1.74*	89(91)
COI	-1.19*	68(79)
SLOPE	1.85*	93(85)
ARROW*COI	-0.62*	53(69)
ARROW*SLOPE	0.89*	79(80)

Higher COI discourages fleeting orders

ARROWHEAD increased the frequency of fleeting orders; strengthened COI => fleeting orders relation.

	Full Sample (TSE difference- Osaka difference)	Large Cap	Medium Cap	Small Cap
Variable	Coefficient	Coefficient	Coefficient	Coefficient
	(Std Err)	(Std Err)	(Std Err)	(Std Err)
AUTO CORR	0.56** (0.12)	1.23** (0.15)	0.61** (0.11)	0.21 (0.24)
CROSS CORR	0.29* (0.11)	0.47** (0.12)	0.28* (0.09)	0.19 [†] (0.10)
QSR	0.68** (0.16)	0.87** (0.14)	0.54* (0.19)	0.57* (0.19)
ΔCOVAR	0.76** (0.18)	1.23** (0.15)	0.61** (0.11)	0.21 (0.24)
ΔCOVAQ	1.43** (0.34)	2.21** (0.54)	1.28** (0.32)	0.95* (0.31)
COI (basis pts)	-0.21* (0.10)	-0.50** (0.11)	-0.29* (0.12)	-0.06 (0.08)
SLOPE	0.11 (0.08)	0.18* (0.09)	0.10 (0.09)	0.04 (0.06)

Panel A. Effect of Arrowhead on tail risk, as defined by trading minutes when the market return is in the 5th percentile or less

	(1)	(2)	(3)
Variables	Pre Arrowhead	Post Arrowhead	(1) - (2)
AUTOCORR	-0.01	0.16	0.17**
CROSSCORR	0.04	0.10	0.06**
QSR	2.00	8.18	6.18**
$\Delta COVAR$ (basis pts)	0.05	0.24	0.19**
ΔCOVAQ	16.32	74.21	57.89**

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
Variables	AUTO	%t	CROSS	%t	QTR	%t	COVAR	%t	COVAQ	%t
	CORR	(%sign)	CORR	(%sign)		(%sign)		(%sign)		(%sign)
ARROWHEAD	0.76*	69(74)	0.99*	72(85)	2.11*	88(96)	0.63*	77(86)	1.03*	72(85)
TAILMIN	0.63*	55(60)	0.91*	79(92)	1.84*	85(99)	0.82*	81(90)	0.91*	66(85)
ARROWHEAD	1.03*	84(96)	1.12*	82(84)	2.26 *	94(99)	0.93*	85(92)	1.01*	78(90)
*TAILMIN										
COI	-0.56*	72(70)	0.51*	79(80)	-0.81*	62(78)	0.52*	70(86)	0.87*	68(92)
SLOPE	0.38	43(75)	-0.41*	58(75)	1.84*	79(91)	-0.35*	54(70)	-0.32	42(67)
NTRDS	0.81*	77(90)	-0.12	15(67)	-0.41	37(60)	0.64*	75(90)	0.63*	65(84)
ATS	-0.23	40(68)	-0.29	50(54)	-0.49	25(67)	0.17	49(70)	-0.47*	53(70)
SPREAD	-0.07	39(89)	0.08	30(65)	-0.62	48(69)	0.05	42(87)	0.45*	61(72)
DEPTH	0.14	37(82)	-0.19	35(52)	0.23	39(84)	-0.11	39(73)	-0.64*	76(91)
RETURN	0.09	5(66)	0.01	1(50)	0.01	2 (67)	0.74*	82(99)	0.11	19(76)
HIGHSPEED	0.72*	61(67)	0.09	25(90)	0.93*	69(80)	-0.39	47(78)	0.65*	69(65)
LOWSPEED	-0.20	8(80)	-0.11	3(67)	-0.10	7 (75)	-0.17	22(78)	-0.18	25(63)
ADJ R ²	0.049		0.113		0.204		0.161		0.062	

Robustness Tests

Alternate sample selection:

- MTU of 1,000
- Drop special quotes
- Time dummies for intraday seasonality
- Analyses based on 5 minutes, 10 minutes and 30 minutes snapshot of LOB

Conclusions

- Low-latency affects market quality:
 - Reduced COI and volatility; Increased #of trades
 - Increased Quotes-to-trade ratio, autocorrelation & cross correlation, CoVaR and CoVaQ
- Arrowhead increased the probability of systemic crash, especially during tail events.