The imprecision of volatility indexes

Rohini Grover Ajay Shah

Finance Research Group Indira Gandhi Institute of Development Research

December 19, 2014

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

■ Volatility index (VIX) is an implied volatility estimate.

■ Volatility index (VIX) is an implied volatility estimate.

It measures the market's expectation of future volatility.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Volatility index (VIX) is an implied volatility estimate.
- It measures the market's expectation of future volatility.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

It has found numerous applications:

- Volatility index (VIX) is an implied volatility estimate.
- It measures the market's expectation of future volatility.
- It has found numerous applications:
 - 1 Volatility forecasting: used in option pricing, value at risk.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

- Volatility index (VIX) is an implied volatility estimate.
- It measures the market's expectation of future volatility.
- It has found numerous applications:
 - 1 Volatility forecasting: used in option pricing, value at risk.
 - 2 VIX measures uncertainty in the economy.
 - Example: When examining the effect of macroeconomic shocks (Bloom, 2009).

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Volatility index (VIX) is an implied volatility estimate.
- It measures the market's expectation of future volatility.
- It has found numerous applications:
 - 1 Volatility forecasting: used in option pricing, value at risk.
 - 2 VIX measures uncertainty in the economy. Example: When examining the effect of macroeconomic shocks (Bloom, 2009).
 - 3 Trading strategies: make decisions to switch between positions.

- Volatility index (VIX) is an implied volatility estimate.
- It measures the market's expectation of future volatility.
- It has found numerous applications:
 - 1 Volatility forecasting: used in option pricing, value at risk.
 - 2 VIX measures uncertainty in the economy.
 - Example: When examining the effect of macroeconomic shocks (Bloom, 2009).
 - 3 Trading strategies: make decisions to switch between positions.
 - 4 Hedging tool: using VIX based derivatives.

CBOE introduced VIX futures in 2004 and options in 2006.

In 2012, open interest for futures at 326,066 and options at 6.3 million contracts.

VIX is imprecise!

Example: Vega VIX

In our sample, the size of the 95% confidence band for Vega VIX (VVIX) is 2.9 percentage points in the median case.

Concern about imprecision in a VIX estimator arises due to aggregation of imprecise implied volatilities (IVs). Latane and Rendleman, 1976; Hentschel, 2003; Jiang and Tian, 2007

- 1 Imprecise option prices.
 - Example: A 6100 OTM call option on the Nifty index is priced at Rs.1.92 when using a VVIX of 17.82%. (Underlying=5464.75; Maturity=29 days)

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Imprecise option prices.

- Example: A 6100 OTM call option on the Nifty index is priced at Rs.1.92 when using a VVIX of 17.82%.
 - (Underlying=5464.75; Maturity=29 days)
- The 95% confidence interval (CI) for VVIX ranges from 16.03% to 19.91%

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

 \implies the option's price may lie between Rs.0.89 and Rs.3.86.

Imprecise option prices.

- Example: A 6100 OTM call option on the Nifty index is priced at Rs.1.92 when using a VVIX of 17.82%.
 - (Underlying=5464.75; Maturity=29 days)
- The 95% confidence interval (CI) for VVIX ranges from 16.03% to 19.91%

- \implies the option's price may lie between Rs.0.89 and Rs.3.86.
- Imprecise VaR and portfolios based on it.

Imprecise option prices.

- Example: A 6100 OTM call option on the Nifty index is priced at Rs.1.92 when using a VVIX of 17.82%.
 - (Underlying=5464.75; Maturity=29 days)
- The 95% confidence interval (CI) for VVIX ranges from 16.03% to 19.91%

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- \implies the option's price may lie between Rs.0.89 and Rs.3.86.
- Imprecise VaR and portfolios based on it.
- 3 Difficulty with pricing derivatives on a fuzzy underlying.

- Estimate the imprecision of model based vixs.
- Use bootstrapping to estimate the imprecision in a VIX estimator.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

 \blacksquare Compute σ and confidence bands to measure this imprecision.

- Estimate the imprecision of model based vixs.
- Use bootstrapping to estimate the imprecision in a VIX estimator.
- Compute σ and confidence bands to measure this imprecision.
- For a cross-section of SPX options with 29 and 64 days to expiry: VVIX estimate - 21.53%
 95% CI - [20.8, 22.32]

- Estimate the imprecision of model based vixs.
- Use bootstrapping to estimate the imprecision in a VIX estimator.
- Compute σ and confidence bands to measure this imprecision.
- For a cross-section of SPX options with 29 and 64 days to expiry: VVIX estimate - 21.53%
 95% CI - [20.8, 22.32]

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 Similarly, for Nifty options with 29 and 57 days to expiry: VVIX estimate - 17.82%
 95% CI - [16.03, 19.91]

- Estimate the imprecision of model based vixs.
- Use bootstrapping to estimate the imprecision in a VIX estimator.
- Compute σ and confidence bands to measure this imprecision.
- For a cross-section of SPX options with 29 and 64 days to expiry: VVIX estimate - 21.53%
 95% CI - [20.8, 22.32]

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Similarly, for Nifty options with 29 and 57 days to expiry: VVIX estimate - 17.82%
 95% CI - [16.03, 19.91]
- Imprecision indicators are used for model selection: vega, liquidity, and elasticity weighted vixs.

- Estimate the imprecision of model based vixs.
- Use bootstrapping to estimate the imprecision in a VIX estimator.
- Compute σ and confidence bands to measure this imprecision.
- For a cross-section of SPX options with 29 and 64 days to expiry: VVIX estimate - 21.53%
 95% CI - [20.8, 22.32]
- Similarly, for Nifty options with 29 and 57 days to expiry: VVIX estimate - 17.82%
 95% CI - [16.03, 19.91]
- Imprecision indicators are used for model selection: vega, liquidity, and elasticity weighted VIXs.
- vvix has the lowest imprecision with a median CI width of 2.9pp.

Outline

- Concerns about measurement
- Measuring the imprecision in a VIX
- Two empirical examples
- Using this measure of imprecision for model selection

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Imprecision of VIX as a measure of ambiguity
- Conclusion

Concerns about measurement

Two approaches to measurement

- Model based approach uses option pricing model VXO, VEGA VVIX etc.
 - Measurement errors in prices imprecise IVs (Hentschel, 2003)
 - Hentschel (2003) derives Cl's from B-S formula.
 - For an ATM stock option with 20 days to expiry, the 95% CIs are of the order +/- 6 pp.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

■ For VXO, the 95% CIs are of the order +/- 25 bps.

Two approaches to measurement

- Model based approach uses option pricing model VXO, VEGA VVIX etc.
 - Measurement errors in prices imprecise IVs (Hentschel, 2003)
 - Hentschel (2003) derives Cl's from B-S formula.
 - For an ATM stock option with 20 days to expiry, the 95% CIs are of the order +/- 6 pp.
 - For VXO, the 95% CIs are of the order +/- 25 bps.
- Model free approach pricing of variance swap CBOE VIX
 - Methodological errors (Jiang and Tian, 2005)
 - Imprecise intra-day VIX due to varying strike range (Andersen et al., 2011)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Measuring the imprecision in a volatility index

Our approach to the problem

- Non-parametric methodology; contrast with Hentschel (2003).
- Model based; contrast with model free.
- Agnostic about the distribution of errors.
- Each option price is an imprecise transformation of the true implied volatility index.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Bootstrapping to estimate the imprecision in the VIX estimator.

An example: Vega weighted VIX

The VVIX is computed from all option prices as follows:

Estimation of IVs using the Black-Scholes model for the two nearest maturities.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

An example: Vega weighted VIX

The VVIX is computed from all option prices as follows:

- Estimation of IVs using the Black-Scholes model for the two nearest maturities.
- 2 Computation of the average weighted IV for each maturity *i*:

$$IV_i = rac{\sum_{j=1}^n w_{ij} IV_{ij}}{\sum_{j=1}^n w_{ij}}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where, IV_{ij} refers to a vector of IVs for $j = \{1 ... n\}$ and two nearest maturities, $i = \{near, next\}$, w_{ij} refers to the vega weight for the corresponding IV_{ij} .

An example: Vega weighted VIX

The VVIX is computed from all option prices as follows:

- Estimation of IVs using the Black-Scholes model for the two nearest maturities.
- 2 Computation of the average weighted IV for each maturity *i*:

$$IV_i = \frac{\sum_{j=1}^n w_{ij} IV_{ij}}{\sum_{j=1}^n w_{ij}}$$

where, IV_{ij} refers to a vector of IVs for $j = \{1 ... n\}$ and two nearest maturities, $i = \{near, next\}$, w_{ij} refers to the vega weight for the corresponding IV_{ij} .

The vega weighted average IVs are interpolated to compute the 30 day expected volatility, VVIX.

■ Calculation of VIX involves aggregation of several imprecise estimates.

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

Calculation of VIX involves aggregation of several imprecise estimates.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Estimation of LIBOR poses a similar challenge:

Calculation of VIX involves aggregation of several imprecise estimates.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Estimation of LIBOR poses a similar challenge:
 - The true price on the OTC market is unobserved.

Calculation of VIX involves aggregation of several imprecise estimates.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Estimation of LIBOR poses a similar challenge:
 - The true price on the OTC market is unobserved.
 - Multiple noisy estimates from polled dealers.

- Calculation of VIX involves aggregation of several imprecise estimates.
- Estimation of LIBOR poses a similar challenge:
 - The true price on the OTC market is unobserved.
 - Multiple noisy estimates from polled dealers.
 - Aggregation into a bootstrapped, robust, and precise estimate (Cita and Lien, 1992; Berkowitz, 1999; Shah, 2000).

- Calculation of VIX involves aggregation of several imprecise estimates.
- Estimation of LIBOR poses a similar challenge:
 - The true price on the OTC market is unobserved.
 - Multiple noisy estimates from polled dealers.
 - Aggregation into a bootstrapped, robust, and precise estimate (Cita and Lien, 1992; Berkowitz, 1999; Shah, 2000).

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The parallel with LIBOR suggests a bootstrap inference approach for VVIX.

Steps involved

1 At time *t*, we observe a chain of option prices for:

Steps involved

1 At time t, we observe a chain of option prices for:

- different strikes
- two nearest maturities

Steps involved

1 At time t, we observe a chain of option prices for:

- different strikes
- two nearest maturities

2 Estimate IVs for every option using the Black-Scholes model.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

1 At time t, we observe a chain of option prices for:

- different strikes
- two nearest maturities
- 2 Estimate IVs for every option using the Black-Scholes model.
- 3 At each maturity, sample with replacement among IVs bootstrap replicate.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

1 At time *t*, we observe a chain of option prices for:

- different strikes
- two nearest maturities
- 2 Estimate IVs for every option using the Black-Scholes model.
- 3 At each maturity, sample with replacement among IVs bootstrap replicate. Two bootstrap datasets, one for each maturity.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

4 Each of these datasets summarised into a vega weighted average IV.

1 At time t, we observe a chain of option prices for:

- different strikes
- two nearest maturities
- 2 Estimate IVs for every option using the Black-Scholes model.
- 3 At each maturity, sample with replacement among IVs bootstrap replicate. Two bootstrap datasets, one for each maturity.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- 4 Each of these datasets summarised into a vega weighted average IV.
- 5 The vega weighted IVs are interpolated to obtain the VVIX estimate.

1 At time t, we observe a chain of option prices for:

- different strikes
- two nearest maturities
- 2 Estimate IVs for every option using the Black-Scholes model.
- At each maturity, sample with replacement among IVs bootstrap replicate. Two bootstrap datasets, one for each maturity.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- 4 Each of these datasets summarised into a vega weighted average IV.
- 5 The vega weighted IVs are interpolated to obtain the VVIX estimate.
- 6 Repeat steps 3 5 *R* times **bootstrap distribution** of the statistic.

1 At time t, we observe a chain of option prices for:

- different strikes
- two nearest maturities
- 2 Estimate IVs for every option using the Black-Scholes model.
- 3 At each maturity, sample with replacement among IVs bootstrap replicate. Two bootstrap datasets, one for each maturity.
- 4 Each of these datasets summarised into a vega weighted average IV.
- 5 The vega weighted IVs are interpolated to obtain the VVIX estimate.
- 6 Repeat steps 3 5 *R* times **bootstrap distribution** of the statistic.
- 7 Now, compute:
 - Standard deviation (σ)
 - Confidence bands adjusted bootstrap percentile method (Efron, 1987)

Data description

- S & P 500 index (SPX) options end-of-day data.
- The data is available for the months of Sep, Oct, and Nov 2010.
- Nifty options tick-by-tick data (~ 200K obs. per day):
- The data is available from Feb, 2009 to Sep, 2010.
- Each dataset includes:
 - Transaction date
 - Expiry date of the options contract
 - Strike price
 - Type of the option i.e. call or put
 - Price of the underlying index
 - Best buy price and ask price of option
- The one and three month MIBOR rates provided by NSE as the riskfree rates.
- The one and three month US Treasury bill rates provided by the US department of the Treasury as the riskfree rates.

Sampling procedure

- We follow Andersen et al. (2011) and sample options as follows:
 - Construct fifteen seconds series for each individual option using the previous tick method from tick-by-tick data.
 - 2 Retain the last available quotes prior to the end of each fifteen second interval throughout the trading day.
 - If no new quote arrives in a fifteen second interval, the last available quote prior to the interval is retained.
 - If no quote is available in the previous interval, the last available quote from the last five minutes is retained.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- 5 Filter out options with zero traded volume (optional).
- For robustness check, sampling frequencies of thirty and sixty seconds are also used.

Two empirical examples

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Intuition

We use a sample of near-the-money SPX options.

The underlying is at 1125.59, the number of days to expiry is 29 and the risk-free rate is 0.12%.

Strike	Туре	Mid-Quote	IVol	Strike	Туре	Mid-Quote	IVol	
			(%)				(%)	
1095	С	42.50	19.31	1095	р	14.00	21.29	
1100	С	38.00	18.30	1100	р	15.25	20.87	
1105	С	35.25	18.71	1105	p	16.65	20.48	
1110	С	31.75	18.35	1110	p	18.05	19.99	
1115	С	28.60	18.14	1115	р	19.70	19.59	
1120	С	25.75	18.05	1120	р	21.55	19.24	
1125	С	22.75	17.70	1125	p	24.55	19.68	
1130	С	19.35	16.90	1130	p	26.30	19.00	
1135	С	16.85	16.66	1135	p	28.10	18.22	
1140	С	14.00	15.98	1140	р	30.85	18.05	
1145	С	12.35	16.12	1145	p	33.65	17.79	
1150	С	10.50	15.94	1150	p	36.45	17.37	
1155	С	8.55	15.49	1155	p	39.75	17.22	
Note: We define near-the-money-options as call and put options with strike-to-spot								
ratio between 0.07 and 1.02 (Pan and Datashman, 2000)								

ratio between 0.97 and 1.03 (Pan and Poteshman, 2006).

■ 95% CI of sample mean: [17.65, 18.84]

A sample of SPX options

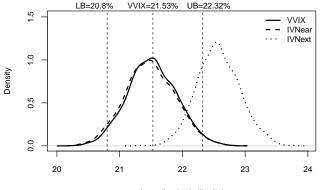
	Strike	Type	Underlying	Mid-Quote	Maturity	Risk-free	IVol
1:	965	С	1125.59	160.70	29	0.12	18.02
2:	970	С	1125.59	155.85	29	0.12	21.87
3:	975	С	1125.59	150.85	29	0.12	21.19
4:	980	С	1125.59	146.00	29	0.12	22.29
5:	985	С	1125.59	141.00	29	0.12	21.57
383:	1400	р	1125.59	278.35	64	0.16	33.14
384:	1450	р	1125.59	328.40	64	0.16	37.27
385:	1500	р	1125.59	378.15	64	0.16	40.61
386:	1550	р	1125.59	428.25	64	0.16	44.41
387:	1600	р	1125.59	478.10	64	0.16	47.53

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

A single replicate

	Strike	Type	Underlying	Mid-Quote	Maturity	Risk-free	IVol
1:	680	р	1125.59	0.08	29	0.12	61.16
2:	1055	С	1125.59	75.55	29	0.12	21.58
3:	1070	р	1125.59	8.85	29	0.12	23.04
4:	900	р	1125.59	0.78	29	0.12	38.44
5:	1245	р	1125.59	121.10	29	0.12	22.54
383:	1050	р	1125.59	18.00	64	0.16	25.56
384:	1005	С	1125.59	127.55	64	0.16	23.76
385:	1110	С	1125.59	45.30	64	0.16	19.72
386:	955	С	1125.59	172.95	64	0.16	23.74
387:	880	р	1125.59	3.00	64	0.16	35.52

The distribution of VVIX on 2010-09-17: SPX

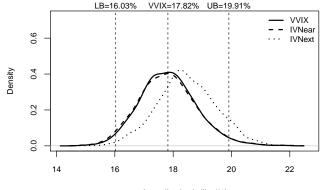


Annualised volatility (%)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The one-day change in VVIX is smaller than 1.5pp on 62% of the days.

The distribution of VVIX on 2010-09-01: Nifty



Annualised volatility (%)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The one-day change in VVIX is smaller than 4pp on 92% of the days.

Imprecision of VVIX over a large sample of Nifty options

- The imprecision indicators are computed from Feb 2009 to Sep 2010.
- The median CI for VVIX is 2.9pp which is an economically significant one.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

This is larger than the one-day change in VVIX of 1.18pp.

Using this measure of imprecision for model selection

Benchmarking performance of VIXs

Alternatives to Vega: elasticity, liquidity etc. (Grover and Thomas, 2012).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Benchmarking performance of VIXs

Alternatives to Vega: elasticity, liquidity etc. (Grover and Thomas, 2012).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Precision is desirable in an estimator.

Benchmarking performance of VIXs

Alternatives to Vega: elasticity, liquidity etc. (Grover and Thomas, 2012).

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

- Precision is desirable in an estimator.
- Smaller σ and confidence interval \implies higher precision.

Methodology

Competitors:

- Vega weighted VIX: VVIX
- Liquidity weighted VIX: SVIX, TVVIX
- Elasticity weighted VIX: EVIX
- Period of analysis: February 2009 September 2010.
 Four snapshots a day.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

■ Sampling frequency: 15, 30, and 60 seconds.

Methodology

Competitors:

- Vega weighted VIX: VVIX
- Liquidity weighted VIX: SVIX, TVVIX
- Elasticity weighted VIX: EVIX
- Period of analysis: February 2009 September 2010.
 Four snapshots a day.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Sampling frequency: 15, 30, and 60 seconds.
- Performance indicators: σ and width of CI.

Methodology

Competitors:

- Vega weighted VIX: VVIX
- Liquidity weighted VIX: SVIX, TVVIX
- Elasticity weighted VIX: EVIX
- Period of analysis: February 2009 September 2010.
 Four snapshots a day.
- Sampling frequency: 15, 30, and 60 seconds.
- Performance indicators: *σ* and width of CI.
- Significant test: Pair wise Wilcoxon signed rank test.
- VVIX has the highest precision median CI width of 2.90pp and σ of 0.73pp.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Presented results are for 15 seconds.
 The results are robust to the sampling frequency.

Summary statistics

Size of confidence band (pp)						
	SVIX	TVVIX	VVIX	EVIX		
Min	0.929	1.362	1.033	2.177		
1st Qu	2.713	2.743	2.271	6.201		
Median	3.546	3.418	2.923	7.368		
Mean	4.542	4.024	3.907	8.245		
3rd Qu	4.845	4.440	4.064	9.262		
Max	52.940	23.790	50.490	51.080		
Std Dev	3.803	2.109	3.636	3.926		
σ of the bootstrap estimates (pp)						
Min	0.239	0.344	0.255	0.571		
1st Qu	0.706	0.706	0.581	1.576		
Median	0.913	0.877	0.739	1.868		
Mean	1.139	1.028	0.945	2.053		
3rd Qu	1.252	1.141	1.025	2.324		
Max	13.390	4.772	11.780	10.580		
Std Dev	0.822	0.530	0.754	0.875		

Pairwise comparisons: Wilcoxon sign rank test

	Size o	f	σ of the		
	confidenc	e band	bootstrap estimates		
	Median Diff Pval		Median Diff	Pval	
EVIX - SVIX	3.745	0.000	0.923	0.000	
EVIX - TVVIX	3.846	0.000	0.962	0.000	
EVIX - VVIX	4.326	0.000	1.097	0.000	
SVIX - TVVIX	-0.004	1.000	0.013	0.341	
SVIX - VVIX	0.641	0.000	0.183	0.000	
TVVIX - VVIX	0.618	0.000	0.165	0.000	

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Ranking: VVIX, SVIX & TVVIX, EVIX

Black Scholes setting – economic agents have complete information.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Black Scholes setting – economic agents have complete information.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

In recent years, there has been considerable interest in 'ambiguity'.

- Black Scholes setting economic agents have complete information.
- In recent years, there has been considerable interest in 'ambiguity'.
- Economic agents are exposed to risk but do not know the probability distributions of the shocks they face.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Black Scholes setting economic agents have complete information.
- In recent years, there has been considerable interest in 'ambiguity'.
- Economic agents are exposed to risk but do not know the probability distributions of the shocks they face.
- Many recent papers have proposed measures of ambiguity:
 - 1 Brenner and Izhakian (2011) use variance of probability of gain or loss,

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Black Scholes setting economic agents have complete information.
- In recent years, there has been considerable interest in 'ambiguity'.
- Economic agents are exposed to risk but do not know the probability distributions of the shocks they face.
- Many recent papers have proposed measures of ambiguity:
 - 1 Brenner and Izhakian (2011) use variance of probability of gain or loss,

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

2 Grient et al. (2013) use volatility of implied volatility, and

- Black Scholes setting economic agents have complete information.
- In recent years, there has been considerable interest in 'ambiguity'.
- Economic agents are exposed to risk but do not know the probability distributions of the shocks they face.
- Many recent papers have proposed measures of ambiguity:
 - Brenner and Izhakian (2011) use variance of probability of gain or loss,
 - 2 Grient et al. (2013) use volatility of implied volatility, and
 - 3 Ehsani et al. (2013) use the mean divergence between implied probability distributions.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Black Scholes setting economic agents have complete information.
- In recent years, there has been considerable interest in 'ambiguity'.
- Economic agents are exposed to risk but do not know the probability distributions of the shocks they face.
- Many recent papers have proposed measures of ambiguity:
 - Brenner and Izhakian (2011) use variance of probability of gain or loss,
 - 2 Grient et al. (2013) use volatility of implied volatility, and
 - 3 Ehsani et al. (2013) use the mean divergence between implied probability distributions.
- The proposed measure of imprecision of VIX, might prove to be useful in quantifying the extent of ambiguity that is present at a point in time.

(ロ) (同) (三) (三) (三) (○) (○)

Reproducible research

R package ifrogs has been released into the public domain, with an open source implementation of the methods of this paper.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Hentschel (2003) argues that imprecision in VIX is small.

Hentschel (2003) argues that imprecision in VIX is small.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Our result disagrees substantially with his.

Hentschel (2003) argues that imprecision in VIX is small.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Our result disagrees substantially with his.
- These differences result from our use of:

Hentschel (2003) argues that imprecision in VIX is small.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Our result disagrees substantially with his.
- These differences result from our use of:
 - 1 a model-free strategy

- Hentschel (2003) argues that imprecision in VIX is small.
- Our result disagrees substantially with his.
- These differences result from our use of:
 - a model-free strategy
 - 2 free from any distributional assumptions about errors

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Hentschel (2003) argues that imprecision in VIX is small.
- Our result disagrees substantially with his.
- These differences result from our use of:
 - 1 a model-free strategy
 - 2 free from any distributional assumptions about errors

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

a large sample of options

- Hentschel (2003) argues that imprecision in VIX is small.
- Our result disagrees substantially with his.
- These differences result from our use of:
 - 1 a model-free strategy
 - 2 free from any distributional assumptions about errors
 - 3 a large sample of options
 - 4 a VIX derived from a wide range of strikes in contrast to VXO

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Hentschel (2003) argues that imprecision in VIX is small.
- Our result disagrees substantially with his.
- These differences result from our use of:
 - 1 a model-free strategy
 - 2 free from any distributional assumptions about errors
 - 3 a large sample of options
 - 4 a VIX derived from a wide range of strikes in contrast to VXO
- Imprecision in VIX is significant estimated from SPX or Nifty options.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Hentschel (2003) argues that imprecision in VIX is small.
- Our result disagrees substantially with his.
- These differences result from our use of:
 - a model-free strategy
 - 2 free from any distributional assumptions about errors
 - 3 a large sample of options
 - 4 a VIX derived from a wide range of strikes in contrast to VXO
- Imprecision in VIX is significant estimated from SPX or Nifty options.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Use the imprecision indicators for model selection.
 vvix is the most precise estimator.

- Hentschel (2003) argues that imprecision in VIX is small.
- Our result disagrees substantially with his.
- These differences result from our use of:
 - a model-free strategy
 - 2 free from any distributional assumptions about errors
 - 3 a large sample of options
 - 4 a VIX derived from a wide range of strikes in contrast to VXO
- Imprecision in VIX is significant estimated from SPX or Nifty options.
- Use the imprecision indicators for model selection.
 vvix is the most precise estimator.
- Future work:

Use imprecision indicators to measure ambiguity.

Inference procedures for model-free estimators such as the CBOE VIX.

Thank you

