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The imprecision of volatility indexes

Volatility indexes

Volatility index (VIX) is an implied volatility estimate.

It measures the market’s expectation of future volatility.
It has found numerous applications:

1 Volatility forecasting: used in option pricing, value at risk.
2 VIX measures uncertainty in the economy.

Example: When examining the effect of macroeconomic shocks
(Bloom, 2009).

3 Trading strategies: make decisions to switch between positions.
4 Hedging tool: using VIX based derivatives.

CBOE introduced VIX futures in 2004 and options in 2006.
In 2012, open interest for futures at 326,066 and options at 6.3 million
contracts.



The imprecision of volatility indexes

Volatility indexes

Volatility index (VIX) is an implied volatility estimate.

It measures the market’s expectation of future volatility.

It has found numerous applications:
1 Volatility forecasting: used in option pricing, value at risk.
2 VIX measures uncertainty in the economy.

Example: When examining the effect of macroeconomic shocks
(Bloom, 2009).

3 Trading strategies: make decisions to switch between positions.
4 Hedging tool: using VIX based derivatives.

CBOE introduced VIX futures in 2004 and options in 2006.
In 2012, open interest for futures at 326,066 and options at 6.3 million
contracts.



The imprecision of volatility indexes

Volatility indexes

Volatility index (VIX) is an implied volatility estimate.

It measures the market’s expectation of future volatility.
It has found numerous applications:

1 Volatility forecasting: used in option pricing, value at risk.
2 VIX measures uncertainty in the economy.

Example: When examining the effect of macroeconomic shocks
(Bloom, 2009).

3 Trading strategies: make decisions to switch between positions.
4 Hedging tool: using VIX based derivatives.

CBOE introduced VIX futures in 2004 and options in 2006.
In 2012, open interest for futures at 326,066 and options at 6.3 million
contracts.



The imprecision of volatility indexes

Volatility indexes

Volatility index (VIX) is an implied volatility estimate.

It measures the market’s expectation of future volatility.
It has found numerous applications:

1 Volatility forecasting: used in option pricing, value at risk.

2 VIX measures uncertainty in the economy.
Example: When examining the effect of macroeconomic shocks
(Bloom, 2009).

3 Trading strategies: make decisions to switch between positions.
4 Hedging tool: using VIX based derivatives.

CBOE introduced VIX futures in 2004 and options in 2006.
In 2012, open interest for futures at 326,066 and options at 6.3 million
contracts.



The imprecision of volatility indexes

Volatility indexes

Volatility index (VIX) is an implied volatility estimate.

It measures the market’s expectation of future volatility.
It has found numerous applications:

1 Volatility forecasting: used in option pricing, value at risk.
2 VIX measures uncertainty in the economy.

Example: When examining the effect of macroeconomic shocks
(Bloom, 2009).

3 Trading strategies: make decisions to switch between positions.
4 Hedging tool: using VIX based derivatives.

CBOE introduced VIX futures in 2004 and options in 2006.
In 2012, open interest for futures at 326,066 and options at 6.3 million
contracts.



The imprecision of volatility indexes

Volatility indexes

Volatility index (VIX) is an implied volatility estimate.

It measures the market’s expectation of future volatility.
It has found numerous applications:

1 Volatility forecasting: used in option pricing, value at risk.
2 VIX measures uncertainty in the economy.

Example: When examining the effect of macroeconomic shocks
(Bloom, 2009).

3 Trading strategies: make decisions to switch between positions.

4 Hedging tool: using VIX based derivatives.
CBOE introduced VIX futures in 2004 and options in 2006.
In 2012, open interest for futures at 326,066 and options at 6.3 million
contracts.



The imprecision of volatility indexes

Volatility indexes

Volatility index (VIX) is an implied volatility estimate.

It measures the market’s expectation of future volatility.
It has found numerous applications:

1 Volatility forecasting: used in option pricing, value at risk.
2 VIX measures uncertainty in the economy.

Example: When examining the effect of macroeconomic shocks
(Bloom, 2009).

3 Trading strategies: make decisions to switch between positions.
4 Hedging tool: using VIX based derivatives.

CBOE introduced VIX futures in 2004 and options in 2006.
In 2012, open interest for futures at 326,066 and options at 6.3 million
contracts.



The imprecision of volatility indexes

VIX is imprecise!

Example: Vega VIX

In our sample, the size of the 95% confidence band for Vega VIX (VVIX) is 2.9
percentage points in the median case.

Concern about imprecision in a VIX estimator arises due to aggregation of
imprecise implied volatilities (IVs). Latane and Rendleman, 1976; Hentschel,
2003; Jiang and Tian, 2007



The imprecision of volatility indexes

Consequences of imprecision

1 Imprecise option prices.
Example: A 6100 OTM call option on the Nifty index is priced at Rs.1.92
when using a VVIX of 17.82%.
(Underlying=5464.75; Maturity=29 days)

The 95% confidence interval (CI) for VVIX ranges from 16.03% to 19.91%
=⇒ the option’s price may lie between Rs.0.89 and Rs.3.86.

2 Imprecise VaR and portfolios based on it.

3 Difficulty with pricing derivatives on a fuzzy underlying.
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Summary

Estimate the imprecision of model based VIXs.

Use bootstrapping to estimate the imprecision in a VIX estimator.

Compute σ and confidence bands to measure this imprecision.

For a cross-section of SPX options with 29 and 64 days to expiry:
VVIX estimate - 21.53%
95% CI - [20.8, 22.32]

Similarly, for Nifty options with 29 and 57 days to expiry:
VVIX estimate - 17.82%
95% CI - [16.03, 19.91]

Imprecision indicators are used for model selection:
vega, liquidity, and elasticity weighted VIXs.

VVIX has the lowest imprecision with a median CI width of 2.9pp.
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Outline

Concerns about measurement

Measuring the imprecision in a VIX

Two empirical examples

Using this measure of imprecision for model selection

Imprecision of VIX as a measure of ambiguity

Conclusion
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The imprecision of volatility indexes

Two approaches to measurement

Model based approach - uses option pricing model - VXO, VEGA VVIX
etc.

Measurement errors in prices - imprecise IVs (Hentschel, 2003)
Hentschel (2003) derives CI’s from B-S formula.
For an ATM stock option with 20 days to expiry, the 95% CIs are of the order
+/- 6 pp.
For VXO, the 95% CIs are of the order +/- 25 bps.

Model free approach - pricing of variance swap - CBOE VIX
Methodological errors (Jiang and Tian, 2005)
Imprecise intra-day VIX due to varying strike range (Andersen et al., 2011)
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Measuring the imprecision in a volatility index
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Our approach to the problem

Non-parametric methodology; contrast with Hentschel (2003).

Model based; contrast with model free.

Agnostic about the distribution of errors.

Each option price is an imprecise transformation of the true implied
volatility index.

Bootstrapping to estimate the imprecision in the VIX estimator.
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An example: Vega weighted VIX

The VVIX is computed from all option prices as follows:

1 Estimation of IVs using the Black-Scholes model for the two nearest
maturities.

2 Computation of the average weighted IV for each maturity i :

IVi =

∑n
j=1 wij IVij∑n

j=1 wij

where, IVij refers to a vector of IVs for j = {1 . . . n} and two nearest
maturities, i = {near , next}, wij refers to the vega weight for the
corresponding IVij .

3 The vega weighted average IVs are interpolated to compute the 30 day
expected volatility, VVIX.
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The imprecision of volatility indexes

Bootstrap inference: The case of LIBOR

Calculation of VIX involves aggregation of several imprecise estimates.

Estimation of LIBOR poses a similar challenge:
The true price on the OTC market is unobserved.
Multiple noisy estimates from polled dealers.
Aggregation into a bootstrapped, robust, and precise estimate (Cita and
Lien, 1992; Berkowitz, 1999; Shah, 2000).

The parallel with LIBOR suggests a bootstrap inference approach for
VVIX.
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Steps involved

1 At time t , we observe a chain of option prices for:

different strikes
two nearest maturities

2 Estimate IVs for every option using the Black-Scholes model.

3 At each maturity, sample with replacement among IVs – bootstrap replicate.
Two bootstrap datasets, one for each maturity.

4 Each of these datasets summarised into a vega weighted average IV.

5 The vega weighted IVs are interpolated to obtain the VVIX estimate.

6 Repeat steps 3 - 5 R times – bootstrap distribution of the statistic.

7 Now, compute:

Standard deviation (σ)
Confidence bands – adjusted bootstrap percentile method (Efron, 1987)
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Data description

S & P 500 index (SPX) options end-of-day data.

The data is available for the months of Sep, Oct, and Nov 2010.

Nifty options tick-by-tick data (∼ 200K obs. per day):

The data is available from Feb, 2009 to Sep, 2010.
Each dataset includes:

Transaction date
Expiry date of the options contract
Strike price
Type of the option i.e. call or put
Price of the underlying index
Best buy price and ask price of option

The one and three month MIBOR rates provided by NSE as the riskfree
rates.

The one and three month US Treasury bill rates provided by the US
department of the Treasury as the riskfree rates.
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Sampling procedure

We follow Andersen et al. (2011) and sample options as follows:
1 Construct fifteen seconds series for each individual option using the

previous tick method from tick-by-tick data.
2 Retain the last available quotes prior to the end of each fifteen second

interval throughout the trading day.
3 If no new quote arrives in a fifteen second interval, the last available quote

prior to the interval is retained.
4 If no quote is available in the previous interval, the last available quote from

the last five minutes is retained.
5 Filter out options with zero traded volume (optional).

For robustness check, sampling frequencies of thirty and sixty seconds
are also used.
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Two empirical examples
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Intuition

We use a sample of near-the-money SPX options.
The underlying is at 1125.59, the number of days to expiry is 29 and the risk-free
rate is 0.12%.
Strike Type Mid-Quote IVol Strike Type Mid-Quote IVol

(%) (%)
1095 c 42.50 19.31 1095 p 14.00 21.29
1100 c 38.00 18.30 1100 p 15.25 20.87
1105 c 35.25 18.71 1105 p 16.65 20.48
1110 c 31.75 18.35 1110 p 18.05 19.99
1115 c 28.60 18.14 1115 p 19.70 19.59
1120 c 25.75 18.05 1120 p 21.55 19.24
1125 c 22.75 17.70 1125 p 24.55 19.68
1130 c 19.35 16.90 1130 p 26.30 19.00
1135 c 16.85 16.66 1135 p 28.10 18.22
1140 c 14.00 15.98 1140 p 30.85 18.05
1145 c 12.35 16.12 1145 p 33.65 17.79
1150 c 10.50 15.94 1150 p 36.45 17.37
1155 c 8.55 15.49 1155 p 39.75 17.22

Note: We define near-the-money-options as call and put options with strike-to-spot
ratio between 0.97 and 1.03 (Pan and Poteshman, 2006).

95% CI of sample mean: [17.65, 18.84]
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A sample of SPX options

Strike Type Underlying Mid-Quote Maturity Risk-free IVol
1: 965 c 1125.59 160.70 29 0.12 18.02
2: 970 c 1125.59 155.85 29 0.12 21.87
3: 975 c 1125.59 150.85 29 0.12 21.19
4: 980 c 1125.59 146.00 29 0.12 22.29
5: 985 c 1125.59 141.00 29 0.12 21.57
---

383: 1400 p 1125.59 278.35 64 0.16 33.14
384: 1450 p 1125.59 328.40 64 0.16 37.27
385: 1500 p 1125.59 378.15 64 0.16 40.61
386: 1550 p 1125.59 428.25 64 0.16 44.41
387: 1600 p 1125.59 478.10 64 0.16 47.53
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A single replicate

Strike Type Underlying Mid-Quote Maturity Risk-free IVol
1: 680 p 1125.59 0.08 29 0.12 61.16
2: 1055 c 1125.59 75.55 29 0.12 21.58
3: 1070 p 1125.59 8.85 29 0.12 23.04
4: 900 p 1125.59 0.78 29 0.12 38.44
5: 1245 p 1125.59 121.10 29 0.12 22.54
---

383: 1050 p 1125.59 18.00 64 0.16 25.56
384: 1005 c 1125.59 127.55 64 0.16 23.76
385: 1110 c 1125.59 45.30 64 0.16 19.72
386: 955 c 1125.59 172.95 64 0.16 23.74
387: 880 p 1125.59 3.00 64 0.16 35.52
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The distribution of VVIX on 2010-09-17: SPX
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The distribution of VVIX on 2010-09-01: Nifty
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Imprecision of VVIX over a large sample of Nifty options

The imprecision indicators are computed from Feb 2009 to Sep 2010.

The median CI for VVIX is 2.9pp which is an economically significant one.

This is larger than the one-day change in VVIX of 1.18pp.
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Using this measure of imprecision for model selection
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Benchmarking performance of VIXs

Alternatives to Vega: elasticity, liquidity etc. (Grover and Thomas, 2012).

Precision is desirable in an estimator.

Smaller σ and confidence interval =⇒ higher precision.
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Methodology

Competitors:
Vega weighted VIX: VVIX
Liquidity weighted VIX: SVIX, TVVIX
Elasticity weighted VIX: EVIX

Period of analysis: February 2009 - September 2010.
Four snapshots a day.

Sampling frequency: 15, 30, and 60 seconds.

Performance indicators: σ and width of CI.

Significant test: Pair wise Wilcoxon signed rank test.

VVIX has the highest precision – median CI width of 2.90pp and σ of
0.73pp.

Presented results are for 15 seconds.
The results are robust to the sampling frequency.
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0.73pp.

Presented results are for 15 seconds.
The results are robust to the sampling frequency.
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Summary statistics

Size of confidence band (pp)
SVIX TVVIX VVIX EVIX

Min 0.929 1.362 1.033 2.177
1st Qu 2.713 2.743 2.271 6.201
Median 3.546 3.418 2.923 7.368
Mean 4.542 4.024 3.907 8.245
3rd Qu 4.845 4.440 4.064 9.262
Max 52.940 23.790 50.490 51.080
Std Dev 3.803 2.109 3.636 3.926

σ of the bootstrap estimates (pp)
Min 0.239 0.344 0.255 0.571
1st Qu 0.706 0.706 0.581 1.576
Median 0.913 0.877 0.739 1.868
Mean 1.139 1.028 0.945 2.053
3rd Qu 1.252 1.141 1.025 2.324
Max 13.390 4.772 11.780 10.580
Std Dev 0.822 0.530 0.754 0.875
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Pairwise comparisons: Wilcoxon sign rank test

Size of σ of the
confidence band bootstrap estimates

Median Diff Pval Median Diff Pval
EVIX - SVIX 3.745 0.000 0.923 0.000
EVIX - TVVIX 3.846 0.000 0.962 0.000
EVIX - VVIX 4.326 0.000 1.097 0.000
SVIX - TVVIX -0.004 1.000 0.013 0.341
SVIX - VVIX 0.641 0.000 0.183 0.000
TVVIX - VVIX 0.618 0.000 0.165 0.000

Ranking: VVIX, SVIX & TVVIX, EVIX
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Imprecision of VIX as a measure of ambiguity

Black Scholes setting – economic agents have complete information.

In recent years, there has been considerable interest in ‘ambiguity’.

Economic agents are exposed to risk but do not know the probability
distributions of the shocks they face.
Many recent papers have proposed measures of ambiguity:

1 Brenner and Izhakian (2011) use variance of probability of gain or loss,
2 Grient et al. (2013) use volatility of implied volatility, and
3 Ehsani et al. (2013) use the mean divergence between implied probability

distributions.

The proposed measure of imprecision of VIX, might prove to be useful in
quantifying the extent of ambiguity that is present at a point in time.



The imprecision of volatility indexes

Imprecision of VIX as a measure of ambiguity

Black Scholes setting – economic agents have complete information.

In recent years, there has been considerable interest in ‘ambiguity’.

Economic agents are exposed to risk but do not know the probability
distributions of the shocks they face.
Many recent papers have proposed measures of ambiguity:

1 Brenner and Izhakian (2011) use variance of probability of gain or loss,
2 Grient et al. (2013) use volatility of implied volatility, and
3 Ehsani et al. (2013) use the mean divergence between implied probability

distributions.

The proposed measure of imprecision of VIX, might prove to be useful in
quantifying the extent of ambiguity that is present at a point in time.



The imprecision of volatility indexes

Imprecision of VIX as a measure of ambiguity

Black Scholes setting – economic agents have complete information.

In recent years, there has been considerable interest in ‘ambiguity’.

Economic agents are exposed to risk but do not know the probability
distributions of the shocks they face.

Many recent papers have proposed measures of ambiguity:
1 Brenner and Izhakian (2011) use variance of probability of gain or loss,
2 Grient et al. (2013) use volatility of implied volatility, and
3 Ehsani et al. (2013) use the mean divergence between implied probability

distributions.

The proposed measure of imprecision of VIX, might prove to be useful in
quantifying the extent of ambiguity that is present at a point in time.



The imprecision of volatility indexes

Imprecision of VIX as a measure of ambiguity

Black Scholes setting – economic agents have complete information.

In recent years, there has been considerable interest in ‘ambiguity’.

Economic agents are exposed to risk but do not know the probability
distributions of the shocks they face.
Many recent papers have proposed measures of ambiguity:

1 Brenner and Izhakian (2011) use variance of probability of gain or loss,

2 Grient et al. (2013) use volatility of implied volatility, and
3 Ehsani et al. (2013) use the mean divergence between implied probability

distributions.

The proposed measure of imprecision of VIX, might prove to be useful in
quantifying the extent of ambiguity that is present at a point in time.



The imprecision of volatility indexes

Imprecision of VIX as a measure of ambiguity

Black Scholes setting – economic agents have complete information.

In recent years, there has been considerable interest in ‘ambiguity’.

Economic agents are exposed to risk but do not know the probability
distributions of the shocks they face.
Many recent papers have proposed measures of ambiguity:

1 Brenner and Izhakian (2011) use variance of probability of gain or loss,
2 Grient et al. (2013) use volatility of implied volatility, and

3 Ehsani et al. (2013) use the mean divergence between implied probability
distributions.

The proposed measure of imprecision of VIX, might prove to be useful in
quantifying the extent of ambiguity that is present at a point in time.



The imprecision of volatility indexes

Imprecision of VIX as a measure of ambiguity

Black Scholes setting – economic agents have complete information.

In recent years, there has been considerable interest in ‘ambiguity’.

Economic agents are exposed to risk but do not know the probability
distributions of the shocks they face.
Many recent papers have proposed measures of ambiguity:

1 Brenner and Izhakian (2011) use variance of probability of gain or loss,
2 Grient et al. (2013) use volatility of implied volatility, and
3 Ehsani et al. (2013) use the mean divergence between implied probability

distributions.

The proposed measure of imprecision of VIX, might prove to be useful in
quantifying the extent of ambiguity that is present at a point in time.



The imprecision of volatility indexes

Imprecision of VIX as a measure of ambiguity

Black Scholes setting – economic agents have complete information.

In recent years, there has been considerable interest in ‘ambiguity’.

Economic agents are exposed to risk but do not know the probability
distributions of the shocks they face.
Many recent papers have proposed measures of ambiguity:

1 Brenner and Izhakian (2011) use variance of probability of gain or loss,
2 Grient et al. (2013) use volatility of implied volatility, and
3 Ehsani et al. (2013) use the mean divergence between implied probability

distributions.

The proposed measure of imprecision of VIX, might prove to be useful in
quantifying the extent of ambiguity that is present at a point in time.



The imprecision of volatility indexes

Reproducible research

R package ifrogs has been released into the public domain, with an open
source implementation of the methods of this paper.

https://r-forge.r-project.org/projects/ifrogs/
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Conclusion

Hentschel (2003) argues that imprecision in VIX is small.

Our result disagrees substantially with his.
These differences result from our use of:

1 a model-free strategy
2 free from any distributional assumptions about errors
3 a large sample of options
4 a VIX derived from a wide range of strikes in contrast to VXO

Imprecision in VIX is significant – estimated from SPX or Nifty options.

Use the imprecision indicators for model selection.
VVIX is the most precise estimator.

Future work:
Use imprecision indicators to measure ambiguity.
Inference procedures for model-free estimators such as the CBOE VIX.
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Thank you


